
Visualization of Source Code Similarity using
2.5D Semantic Software Maps

Daniel Atzberger, Tim Cech, Willy Scheibel,
Daniel Limberger, and Jürgen Döllner

Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam

Abstract. For various program comprehension tasks, software visual-
ization techniques can be beneficial by displaying aspects related to the
behavior, structure, or evolution of software. In many cases, the question
is related to the semantics of the source code files, e.g., the localization
of files that implement specific features or the detection of files with
similar semantics. This work presents a general software visualization
technique for source code documents, which uses 3D glyphs placed on
a two-dimensional reference plane. The relative positions of the glyphs
captures their semantic relatedness. Our layout originates from applying
Latent Dirichlet Allocation and Multidimensional Scaling on the com-
ments and identifier names found in the source code files. Though different
variants for 3D glyphs can be applied, we focus on cylinders, trees, and
avatars. We discuss various mappings of data associated with source code
documents to the visual variables of 3D glyphs for selected use cases and
provide details on our visualization system.

Keywords: Source Code Mining · Software Visualization · Glyph Visu-
alization.

1 Introduction

About 90% of the entire costs of a software project are related to the maintenance
phase [14], i.e., to prevent problems before they occur (preventive maintenance),
correct faults (corrective maintenance), improve the functionality or performance
(perfective maintenance), or adapt to a changing environment (adaptive main-
tenance) [23]. There are various visualization techniques to represent aspects
related to the structure, the behavior, or the evolution of the underlying software,
to assist users in program comprehension tasks during the maintenance phase.
Nevertheless, since software has no intrinsic gestalt, software visualization uses
suitable abstractions and metaphors to depict aspects of and relations within
software data to support and, at best, align users in their mental representation
of selected software aspects. Interactive visualizations allow users to analyze
a software project in an exploratory way and thus support finding informa-
tion and gaining knowledge. Examples for well-established, interactive software
visualization techniques are:

– Icicle Plots for representations of trace executions [36,10],



2 D. Atzberger et al.

– Treemaps depicting the hierarchical structure of software projects [41,32],
– Circular Bundle Views illustrating relations, e.g., include dependencies [11],
– Software Cities that reflect the development history of software [45,46], and
– similar approaches based on cartographic metaphors [21,28].

Many specific questions in maintenance are related to the semantic structure
of software projects. For example, in the case of perfective maintenance, source
code files implementing a specific functionality or concept need to be identified.
It is helpful to be aware of other files that share semantics in this context. Such
tasks can become intensively time-consuming with long-lasting software systems
and with an increasing number of different developers. In order to support such
tasks, various layouts exist that can reflect semantic similarities between files, i.e.,
by placing files with a similar semantic closer to one another [27,28,2,4]. Using
2D or 3D glyphs to represent files with a semantic positioning and additional
data mapping, e.g., software metrics mapped to the glyphs’ visual variables,
facilitates the comprehension of the semantic structure of a software project.
For the remainder of this work, we refer to the term glyphs as defined by Ward
et al.; “In the context of data and information visualization, a glyph is a visual
representation of a piece of data or information where a graphical entity and its
attributes are controlled by one or more data attributes” [51].

In this work, we present a general approach for placing custom 3D glyphs in
a 2D reference space for software visualization tasks, in order to (1) capture the
semantic structure of source code files and (2) allow for an additional, inherent
visual display of related data, e.g., software metrics. For our layout technique, we
assume developer comments and deliberately chosen identifiers to not only provide
instructions for compilers but to simultaneously document and communicate
intent, function, and context to developers. This assumption motivates the
use of techniques from the Natural Language Processing (NLP) domain for
mining the semantic structure of source code documents. We apply Latent
Dirichlet Allocation (LDA), a probabilistic topic model, to capture the semantic
structure of a software structure, which leads to a mathematical description of
source code files. By applying Multidimensional Scaling (MDS) as a dimension
reduction technique, we generate a two-dimensional layout that reflects the
semantic relatedness between the source code files. We represent every source
code unit or file as a single 3D glyph. Though plenty of glyphs and metaphors
have been applied to software visualization tasks, we focus our discussion on
three examples we considered valuable:

Cylinders with their extent, height, and color as visual variables.
Trees with a variety of visual variables, e.g., size, type, leaf color, health,

age, and season.
Avatars which can be easily distinguished from each other and clearly

identified, e.g., for depicting software developers or teams.

We describe fitting use cases for every glyph and provide examples using pop-
ular Open Source projects data. Figure 1 shows one exemplary result of our
visualization approach.



Visualization of Source Code Similarity using 2.5D Semantic Software Maps 3

Fig. 1. Example of a Software Forest using handcrafted tree models from SketchFab
(sketchfab.com) as 3D glyphs. Each tree represents a source code file. Quantitative and
qualitative data associated to the files can be mapped to age, type, and health of a tree.

The remainder of this work is structured as follows: In section 2 we review
existing work related to our approach. We provide an overview of possible layouts
for visualizing source code and glyphs and natural metaphors in the software
visualization domain. In Section 3 we detail the layout approach, which is based on
LDA and MDS and applied to comments and identifiers in source code. Section 4
describes use case scenarios and shows how data related to the semantics of
source code files can be represented. We further present a detailed explanation of
our system and its implementation in Section 5 and, finally, conclude this paper
in section 6 and present directions for future work.

2 Related Work

Our visualizations are created in two distinct steps. First, we generate a semantic
layout that is then used for placing 3D glyphs (representing source code files).
Second, we map quantitative and qualitative data of source code files to the
available visual variables of the 3D glyphs. With respect to the prior art, we,
therefore, focus on these two aspects. We describe existing approaches for placing
documents in a reference space in order to reflect their semantic similarity and also
describe existing 2.5D approaches based on treemaps for software visualization
tasks. We then present relevant work on three widely used visualization metaphors,
namely the island metaphor, the tree metaphor, and the city metaphor. Selected
glyphs are presented at the end of this section.

Semantic Layouts for Software Visualization. When designing visualizations, one
has to consider the placement of data items in the reference space. In the case
of document visualization, we call a layout whose goal is to reflect the semantic
relatedness between the data items a semantic layout. In a semantic layout,

https://sketchfab.com/


4 D. Atzberger et al.

documents that share a common similarity are placed nearby each other. As
documents are mostly viewed as Bag-of-Words (BOW), i.e., the order of words
within a document is neglected, and only their frequency is taken into account,
dimension reduction techniques are used to project the high-dimensional points
to a two-dimensional plane or a three-dimensional space.

Skupin et al. proposed an approach for generating two-dimensional visualiza-
tions for text documents using cartographic metaphors [44]. The authors applied
Self-Organizing Map (SOM) on the BOW [26], as dimension reduction technique,
to place abstracts of publications about geography on the plane. Furthermore,
dominant terms were displayed, thus showing the semantic content of the region
in the visualization.

Kuhn et al. were the first to propose a semantic layout for software visualiza-
tion tasks [27,28]. First, each source code file is considered as a single document
and several preprocessing tasks are undertaken to remove noise from the vocab-
ulary. Then, the high-dimensional BOW is reduced in their dimension in two
steps. The topic model Latent Semantic Indexing (LSI) [13] is applied, which
describes each document through its expression in the latent topics within a
software project, which can already be seen as a dimension reduction of the
BOW. After this, MDS [12] is applied on the dissimilarity matrix that captures
the pairwise dissimilarities of the documents using the cosine-similarity. The
resulting two-dimensional scatterplot is then equipped with height lines, resulting
in a cartographic visualization. In addition, two-dimensional glyphs are placed
for displaying coding activities, e.g., test tubes.

Linstead et al. [34,35] were the first to propose a semantic software layout based
on LDA and its variant, the Author-Topic Model (ATM), which additionally
takes information about authorship into account [39]. By applying the topic
models on the source code of the Eclipse project, both source code files and
authors are described as distributions over latent topics. The final layout is
computed by applying MDS on the dissimilarity matrix, which contains the
pairwise symmetrized Kullback-Leibler divergence of the authors or files.

Another approach that models the semantic structure of source code files
using LDA for visualization tasks was presented by Atzberger et al. [2]. In
their approach, the authors first apply MDS on the topic-word distributions to
compute two-dimensional vertices, representing the topics, as presented in [43].
The position of a document is then computed as a convex linear combination
according to its document-topic distribution. Using this layout, the authors
introduced the tree metaphor for software visualization, resulting in the so-called
Software Forest. In a later work, Atzberger et al. discussed the use of pawns
and chess figures as 3D glyphs for visualizing the knowledge distribution across
software development teams [3]. In this case, the layout reflects the semantic
similarity between developers, additional information about the expertise of each
developer can then be mapped on the visual variables of the representing glyph.

In another work, Atzberger et al. applied their layout approach to a 3D
reference space, creating a stylized scatter plot for the depiction of software
projects [4]. Inspired by a metaphor introduced by Lanza et al. [29], the authors



Visualization of Source Code Similarity using 2.5D Semantic Software Maps 5

displayed each source code file as a star, thereby creating a Software Galaxy.
The authors also introduced transparent volumetric nebulae to make use of the
metaphor of galactic star clusters or nebulae. Attributes such as cluster density or
distribution can subsequently be mapped to the nebulaes’ intensities and colors.

The Island Metaphor. The 2.5D approach used by Atzberger allows for the
integration of a terrain (based on a dynamically generated heightfield), resulting
in visualizations resembling islands. Indeed the island metaphor is a widely used
visualization metaphor in the Software Visualization domain. S̆tĕpánek developed
Helveg, a framework for visualizing C# code as islands, based on a graph-
drawing algorithm layout [47]. Their approach also uses 3D glyphs, e.g., bridges
representing dependencies and trees depicting classes, for visualizing the structure
of a project. CodeSurveyor is another approach that makes use on the cartographic
metaphor [21]. Based on a hierarchical graph layout algorithm, files are positioned
in a 2D reference plane and are aggregated to states, countries, or continents
according to the architectural structure of the software project. CodeSurveyor
shares characterisitcs of treemaps that use non-rectangular shapes [40]. Schreiber
et al. proposed ISLANDVIZ, another approach using the island metaphor. It
enables users to interactively explore a software system in virtual reality and
augmented reality alike [42].

Treemap Layouts. Another widely used class of layout algorithms in the software
visualization domain are Treemaps. Treemaps are inherently capable of reflecting
the typically hierarchical structure of software projects [41,40]. Given their 2D
layout, they can be extended into the third dimension, thus resulting in a 2.5D
visualization. Besides height, color, and texture 2.5D treemaps offer additional
visual variables for additional information display [32,31,33]. An approach that
refer to natural phenomena, e.g., fire or rain, for visualizing software evolution in
a 2.5D treemap was proposed by Würfel et al. [54]. It is worth mentioning that
the class of treemap algorithms includes a large number of shapes other than
just rectangles or Voronoi cells [41].

The Tree Metaphor. In our considerations, we use the tree metaphor since trees
offer a variety of visual variables. Kleiner and Hartigan were the first to propose
a mapping of multivariate data to a 2D tree [25]. Based on hierarchical clustering
of variables, for each data point, the geometry of each tree, i.e., the thickness of
a branch, the angle between branches, and their orientation, is derived from the
data attributes. Erra presented an approach to visualize object-oriented systems
using the tree metaphor, thus resulting in a forest [16,17]. For every revision
each file is depicted as a tree, whose visual variables reflect properties of the
source code, i.e., software metrics, in a predefined way. Later Atzberger et al.
applied the tree metaphor for software visualization tasks [2]. The main difference
between Atzberger et al. and Erra et al. is the placement of the trees in the
reference plane. The approach of Atzberger et al. is not restricted to the case of
object-oriented programming languages, as it only uses the natural language in
source code. Furthermore, the system of Atzberger et al. allows users to specify



6 D. Atzberger et al.

custom mappings of data and visual attributes. The authors do not focus on
rendering realistic trees but rather apply handcrafted models for their approach.
Kleiberg et al. use the tree metaphor for visualizing an entire set of hierarchically
structured data. This approach differs from most other approaches because each
tree does not represent a single document [24].

The City Metaphor. This metaphor is probably the most popular use of 3D
glyphs in the software visualization domain. In their approach CodeCity, Wettel
and Lanza applied a city metaphor for exploring object-oriented software projects
using a 2.5D visualization, referring to real-world cities [52,53]. Each class is
represented by a building and packages are grouped into districts that are placed
according to a modified treemap algorithm. By mapping software metrics onto
the visual variables of the cuboids, e.g., its height and the size of the base, a
user can get an overview of the structure of a project. Steinbrückner adopted the
idea of the city metaphor and introduced a novel layout approach, based on a
hierarchical street system, that captures a project development over time [45,46].

Other Approaches. Beck proposed a mapping between software metrics of object-
oriented software projects and geometric properties of figurative feathers, e.g.,
its size, shape, and texture [5]. Their approach Software Feathers is intended
to support developers in getting a first overview of a software project and to
deticting interesting code entities. Fernandez et al. extended an approach by
Lewis et al. [30], that generates 2D glyphs in order to identify classes with the
same dependencies and similar set of methods [19]. Chuah and Eick proposed
the three glyph visualizations InfoBUG, Time-wheel, and 3D-wheel for the task
of visualizing project-oriented software data [9].

3 Glyph Placement in a 2D Reference Space

According to Ward et al. there are three general strategies for placing glyphs [51]:

1. uniform All glyphs are placed in equidistant positions.
2. structure-driven The positions of the glyphs arise from the structure of the

data set, e.g., a hierarchy or graph structure within the data.
3. data-driven The positions of the glyphs are determined by a set of data

attributes.

In this section, we present the layout approach presented by Atzberger et al. [2].
In a semantic layout, the relative position between two points on the 2D reference
plane should reflect the semantic relatedness between the corresponding data
points, i.e., source code files of a software project. For this, the assumption is
made that the semantic similarity between source code files is reflected in a
shared vocabulary and can therefore be captured using techniques from the NLP
domain. The approach for placing 3D glyphs on a plane has three stages. First,
the source code files of a software project are preprocessed to get rid of words that
carry no semantic information. In the second step LDA is applied to the corpus



Visualization of Source Code Similarity using 2.5D Semantic Software Maps 7

of preprocessed documents to model each source code file as a high-dimensional
vector. Lastly, in the third step, MDS is applied to reduce the vectors in their
dimensionality.

3.1 Data Preprocessing

In our considerations each source code file of a project is viewed as a single
document, the set of all documents is called the corpus, and the set of all words
in the corpus forms the vocabulary. We neglect the ordering of the words within
a document and only store their frequencies in the so-called term-document-
matrix. In order to remove words from the vocabulary that carry no semantic
information, e.g., stopwords of the natural language, it is necessary to perform
several preprocessing steps before applying topic models. Moreover, source code
often follows naming conventions, e.g., the Camel Case convention, thus requiring
additional preprocessing steps [7]. In our experiments, the following sequence of
preprocessing steps has turned out to produce a usable vocabulary [2].

1. Removal of Non-text Symbols: All special characters such as dots and
semicolons are replaced with white spaces to avoid accidental connection of
words not meant to be combined. This includes the splitting of identifier
names, e.g., the word foo.bar gets split into foo and bar.

2. Split of Words: Identifiers are split according to delimiters and the Camel
Case convention, e.g., FooBar is split into foo and bar, and stripped from
redundant white space subsequently.

3. Removal of Stop Words: Stop words based on natural language and pro-
gramming language keywords are removed as they carry no semantic content.
Additionally, we filter the input based on a hand-crafted list comprising
domain-specific stop words, e.g., data types and type abstractions.

4. Lemmatization: To avoid grammatical diversions, all words are reduced to
their basic form, e.g., said and saying are reduced to say.

After applying the four preprocessing steps, we store each document as a BOW.
For the remainder of this paper, we refer to a documents’ BOW after preprocessing
as a document.

3.2 Latent Dirichlet Allocation on Source Code

Topic models are a widely used class of techniques for investigating collections
of documents, e.g., for knowledge comprehension or classification tasks [1]. For
software engineering tasks, LDA proposed by Blei et al. [6], is the most common
technique [7]. Assuming a set of documents D = {d1, . . . , dm}, the so-called
corpus, LDA extracts latent topics φ1, . . . , φK , underlying the corpus, where the
number of topics K is a hyperparameter of the model. As topics are given as
multinomial distributions over the vocabulary V, which contains the terms of
the corpus D, the “concept” underlying a topic, in most cases can be derived
from its most probable words. Table 1 shows an example for three topics with



8 D. Atzberger et al.

their ten most probable words extracted from the Bitcoin project [2]. From the
most probable words, we suggest that topic #1 deals with the internal logic of
cryptocurrency. Words like “thread”, “time”, “queue”, and “callback” are related
to the general concept of parallel processing in C++, and topic #3 is concerned
about the UI.

Besides the topics, LDA learns representations θ1, . . . , θm of the documents as
distributions over the topics. The distributions θ1, . . . , θm therefore capture the
semantic structure of the documents and allow a comparison between them on a
semantic level. LDA makes the assumption of an underlying generative process,
which is given by

1. For each document d in the corpus D choose a distribution over topics
θ ∼ Dirichlet(α)

2. For each word w in d
(a) Choose a topic z ∼ Multinomial(θ)
(b) Choose the word w according to the probability p(w|z, β)

The parameter α = (α1, . . . , αK), where 0 < αi for all 1 ≤ i ≤ K, is the
Dirichlet prior for the document-topic distribution. Its meaning is best understood,
when written as the product α = ac ·m of its concentration parameter ac ∈ R and
its base measure m = (m1, . . . ,mk), whose components sum up to 1. The case of
a base measure m = (1/K, . . . , 1/K) is denoted as symmetrical Dirichlet prior. For
small values of ac, the Dirichlet distribution would favor points in the simplex
that are close to one edge, i.e., LDA would try to describe a document with a
minimum of topics. The larger the value of ac the more likely that LDA is to fit
all topics a non-zero probability for a document. Analogous, those considerations
hold true for the Dirichlet prior β = (β1, . . . , βN ), 0 < βi for 1 ≤ i ≤ N for the
topic-term distribution, where N denotes the size of the vocabulary V.

Since inference for LDA is intractable, approximation techniques need to be
taken into account [6]. Among the most widely used are Collapsed Gibbs Sampling
(CGS) [20], Variational Bayes (VB) [6], and its online version (OVB) [22].

3.3 Multidimensional Scaling

LDA applied on the source code files leads to a description of each document
as a high-dimensional vector, whose components represent the expression in the
respective topic. Therefore using a similarity measure, e.g., the Jensen-Shannon
divergence, two documents can be compared on a semantic level, thus forming
structures, e.g., clusters and outliers, in the set of all documents. Linstead et al.
used this notion of similarity and applied the dimension reduction MDS on
the documents to generate a two-dimensional layout. However, this approach
implicitly assumes that all extracted topics are “equally different” to each other
and neglects the fact that the topics, viewed as distributions over the vocabulary,
can be compared among each other themselves. The layout approach by Atzberger
et al. addresses this issue and applies the dimension reduction technique MDS
on the topics φ1, . . . , φK , which can be compared to each other using the Jensen-
Shannon distance [43,2]. This results in points φ̄1, . . . , φ̄K ∈ R2, whose Euclidean



Visualization of Source Code Similarity using 2.5D Semantic Software Maps 9

Table 1. Three exemplary topics extracted from Bitcoin Core1 source code with K = 50
and the Dirichlet priors set to their default values.

Topic #1 Topic #2 Topic #3

Term Prob. Term Prob. Term Prob.

std 0.070 thread 0.132 address 0.115

transaction 0.031 time 0.070 model 0.108

fee 0.027 queue 0.064 table 0.065

tx 0.026 std 0.054 label 0.051

ban 0.024 callback 0.040 qt 0.033

str 0.023 run 0.037 index 0.030

handler 0.016 call 0.025 dialog 0.024

output 0.016 mutex 0.021 column 0.024

bitcoin 0.015 scheduler 0.020 ui 0.021

reason 0.015 wait 0.018 role 0.019

distance reflects the Jensen-Shannon-distance of the high-dimensional topics. A
document d, given by its document-topic distribution θ = (θ(1), . . . , θ(K)), is then
represented as the convex linear combination d̄, precisely

d̄ =

K∑
j=1

θ(j)ϕ̄j . (1)

A document with a strong expression in a topic is subsequently placed next to
that topic, taking the similarity of topics into account.

4 Visual Attributes of 3D Glyphs and Use Cases

In section 2, we summarized popular visualization metaphors based on 3D glyphs
in the Software Visualization domain. In this section, we review (1) the city
metaphor and (2) the forest metaphor together with (3) the island metaphor. We
categorize our visualization as A3 ⊕R2, i.e., three-dimensional primitives placed
on a two-dimensional reference space pl [2,15]. We further present a novel idea of
placing avatars into the visualization, thus indicating developer activities.

4.1 City Metaphor

The city metaphor, as proposed by Wettel et al., owes its name its visual
similarity to modern cities, caused by displaying software files as cuboids [52].
The motivation for choosing this metaphor was to support a user navigating
through a software system by adopting a well-known metaphor from everyday life.
All existing approaches rely on a layout that captures the hierarchical structure

1 Source code taken from github.com/bitcoin/bitcoin

https://github.com/bitcoin/bitcoin


10 D. Atzberger et al.

of a software project, thus focusing on the architectural aspect of a project.
Therefore, the approaches do not support program comprehension tasks related
to the underlying semantic concepts of a software project. One advantage of the
city metaphor is that they offer various visual variables. Examples proposed in
the literature are:

– Wettel et al. mapped the number of methods to height and the number of
attributes to the cuboids’ horizontal extent [52].

– Steinbrückner et al. used stacked cylinders, where each cylinder displays the
coding activity of a single developer made on a file [46].

– Limberger et al. present various advanced visual variables, e.g., sketchiness
or transparency, for cuboids that can be applied for the city metaphor [32].
Recently, Limberger et al. investigated the use of animations for displaying
the evolution of source code artifacts measured between two revisions [31].

We adapt the idea of the city metaphor in our considerations by representing
each file of a software project as a cylinder. Figure 3 shows a simple example for
the project globjects, where the height and the color of the cylinders are used
as visual variables. The height of the cylinder displays the Lines-of-Code (LOC)
of the respective file, thus revealing the impact of underlying concepts for the
software project. The color displays the percentage of commented lines in the
respective file using a sequential color scheme, which allows drawing conclusions
about the code quality in relation to a concept. In most cases, large files are
grouped nearby each other, thus indicating their underlying concepts seem to
have a large impact on the size of the project in terms of LOC. Furthermore,
large files often harbor the risk of non-sufficient documentation in the form of
comments. This observation could motivate the project maintainer to focus on
that concept, distributed over the individual files, in a future refactoring process.

4.2 Forest Metaphor

As shown in section 2, the idea of forest islands is two widely used metaphors
in the Software Visualization domain, especially as they offer a grouping of files
according to some “relatedness”. Furthermore, islands and forests are real-world
structures, thus making them suitable for creating a mental map for the user
to support program comprehension tasks. Our presentation here follows the
preceding work of Atzberger et al. closely [2]. We focus our discussion to the
following set of visual variables:

– The tree height, e.g., for depicting the size of a file in terms of LOC.

– The color of the tree crown, e.g., displaying software metrics related to the
quality or complexity of the respective file.

– The tree type, e.g., to distinguish the source code files by their file endings.

– The health status of a tree, e.g., for displaying failed tests.

– Chopped trees, e.g., for visualizing deleted files.



Visualization of Source Code Similarity using 2.5D Semantic Software Maps 11

Fig. 2. Examples of two sets of tree glyphs: the top row inherits the visual variables
size, color, and health status. The bottom row shows trees of different types. Both
models were purchased on SketchFab: “HandPainted Pine Pack” by ZugZug and “Low
Poly Nature Pack” by NONE.

Figure 2 shows two sets of tree glyphs and demonstrates the visual attributes
they inherit [2].

When visualizing a software project using the tree metaphor, we first compute
the position of each file as presented in section 3, i.e., each file is represented as
a single tree, thus forming an entire forest. Then for each point, the value of a
height field is computed as presented in [28]. This has the effect that dense regions
are placed on higher ground than regions with fewer trees, but still assuring that
single trees stand on a terrain of 30%− 50% of the maximal height. Furthermore,
we integrated the possibility to configure the water height, which can be seen as
a height filtering technique.

Figure 4 shows the result of applying our approach on the notepad-plus-plus
project3 based on the set of pine trees shown in Figure 2. The underlying visual
mapping aimed to represent the document-topic distribution of each file. The
tree type is chosen according to the main topic of each file, i.e., the topic that
has the highest probability in the file, e.g., documents with the main topic “User
Interface Code” are displayed as green pine trees. All trees of the same color are
highlighted when hovering over a tree. Here we want to mention that we manually
labeled the topics for the project by examining their most probable words. In
general, this is a time-consuming task that needs to be done manually [37].

Our next application demonstrates the use of Software Forest for the bitcoin
project1. In Section 3 we showed three interesting topics extracted from the
source code by applying LDA with K = 50 topics and default values for the
Dirichlet priors. We map the topic with the highest impact for a document onto
the tree type. As the number of tree types is usually limited, this visualization
approach does not scale for a large number of topics. The bitcoin project is
mainly written in C++, C, and Python. We ignore the other source code files

2 Source code taken from https://github.com/cginternals/globjects
3 Source code taken from https://github.com/notepad-plus-plus/notepad-plus-plus

https://github.com/cginternals/globjects
https://github.com/notepad-plus-plus/notepad-plus-plus


12 D. Atzberger et al.

Fig. 3. Example for cylinders placed on a 2D reference plane. Each cylinder represents
a single source code file of the project globjects2. The height displays the LOC of each
file, and the color the percentage of commented lines.

and map the programming language onto the color of the tree. The height of the
tree captures the LOC for the respective file (Figure 5).

4.3 Developer Avatars

Our last visualization metaphor uses 3D glyphs displaying people for showing
coding activities within a software project. Each developer or team is assigned
an avatar whose position shows the source code contributed to within a given
timespan. One question that could be addressed with this visualization would
be the assignment of suitable developers when a bug related to a concept or a
file would occur. Figure 6 shows an example for placing avatars and cylinders
on an island for the example of the globjects project. The color of the cylinders
displays a complexity metric, whereas each figure represents a single developer.
The avatars are placed nearby the file on which they contributed the most. The
large red cylinder indicates a considerable risk in a file, as its complexity is very
high. Moreover, we can deduce from the visualization that an avatar next to a
cylinder might have the required knowledge to maintain or review the risk.

In our example, each team member can choose among a set of given figures,
which he would favor as a representation, however the idea of mapping data to
glyphs displaying developers has been presented by Atzberger et al. for the task of
displaying data related to the skills and expertise of developers [3]. However when
using human-looking glyphs for displaying developer related data, various visual
attributes become critical and should be considered very carefully. One idea to
overcome this issue, would be the use of abstract forms, which only reminds on
human faces, as initially presented as the popular Chernoff faces [8].



Visualization of Source Code Similarity using 2.5D Semantic Software Maps 13

Fig. 4. Software Forest of the notepad-plus-plus project. The tooltip shows the underly-
ing topic distribution of the file represented by the selected tree (highlighted). All trees
with the same dominant topic are highlighted.

5 System Design and Implementation Details

In this section, we present implementation details with respect to the layout
computation and the rendering of our visualization prototype, i.e., the tools
and libraries we choose for generating a 2D layout based on the vocabulary in
the source code files and the visualization mapping and rendering, respectively.
We further describe the supported interaction techniques for enabling a user to
explore a software project. We use a separation of the layout computation and
the interactive rendering component, where the layout computation component
computes a visualization dataset from a source code repository that is used as
an input of the rendering component (see Figure 7).

5.1 Layout Computation

Our approach follows the implementation presented by Atzberger et al. in their
earlier work about the Software Forest [2]. For preprocessing, the natural language
in the source code documents, we apply the nltk4 library for obtaining a list of
stopwords for the English language. We further use spacy5 for lemmatization. We
used the LDA implementation provided by the library Gensim6. Gensim offers
an LDA implementation based on the original implementation by Blei et al. [6] as
well as its online version introduced by Hofman et al. [22]. The implementation of
MDS is taken from the Machine learning library scikit-learn7. The result of the
layout computation is a 2D layout that is merged with other static source code
metrics into a CSV file that is later used for input to the rendering component.

4 https://www.nltk.org/
5 https://spacy.io/
6 https://radimrehurek.com/gensim/
7 https://scikit-learn.org/stable/

https://www.nltk.org/
https://spacy.io/
https://radimrehurek.com/gensim/
https://scikit-learn.org/stable/


14 D. Atzberger et al.

Fig. 5. Part of the Software Forest for the bitcoin project.

5.2 Rendering

The rendering component is an extension to a scatter plot renderer, written
written in TypeScript and WebGL [49]. The main dependency is the open-
source framework webgl-operate8, which handles canvas and WebGL context
management, as well as labeling primitives and glTF scene loading and rendering.
The 3D glyph models are integrated into the rendering component by means of
a glyph atlas and a configuration file. The basic designs for our more advanced
visualization metaphors, i.e., trees and people, are taken from SketchFab9. The
3D glyph atlases are constructed manually using Blender10, but every other 3D
editor with glTF is a feasible alternative. Together with a glyph atlas, we have
to specify its objects within a JSON configuration file (an example is given in
Listing 1). This rendering component is embedded into a Web page with further
GUI elements for the visual mapping and direct interaction techniques on the
canvas to support navigation in the semantic software map.

8 https://webgl-operate.org/
9 https://sketchfab.com/feed

10 https://www.blender.org/

https://webgl-operate.org/
https://sketchfab.com/feed
https://www.blender.org/


Visualization of Source Code Similarity using 2.5D Semantic Software Maps 15

Fig. 6. Examples using avatars positioned in relation to their coding activities.

5.3 User Interaction

As basic interaction techniques, a user can choose mappings from data to visual
variables of the selected glyphs, navigate through the 2.5D visualization, and
retrieve details on demand displayed by tooltips by rotating and zooming. Figure 8
shows the user interface of our web-based implementation prototype. Our system
supports basic interaction techniques, e.g., rotating and zoom. Furthermore, a
tooltip displaying the entire entries of the respective data point contained in the
CSV file shows up. As our approach highly depends on LDA, we highlight all
trees with the same dominant topic as the selected one when hovering over it.
Furthermore, our system allows the user to define a custom mapping between
data columns and the visual variables provided by the selected model. For each
model, we ensure that at least the type, the height, and the color are available as
visual metaphors. By adjusting the effect of the variable tree size, which depends
on a data attribute, the user can further interactively explore the effect of data
variables for the source code files. In order to enhance the rendering with visual
cues and more fidelity, the user can modify rendering details, e.g., by toggling
Anti-Aliasing or soft shadows.

6 Conclusion

6.1 Discussion

Software Visualization techniques support users in program comprehension tasks
by displaying images based on data related to software artifacts. In many cases,
the questions are about the semantics of a software project, e.g., for locating



16 D. Atzberger et al.

Fig. 7. The data processing pipeline to compute the semantic layouts. The rendering
component composes the layouts and glyph atlases based on the visual mapping.

Fig. 8. User interface of our web-based implementation. Besides the full mapping
configuration, rendering parameters can be adjusted by the user.

concepts or functionalities in the source code. Our previous work used a tree
metaphor and a semantic layout to create map-like visualizations to support users
in program comprehension tasks related to the semantics. In this extended work,
we detailed how the topic model LDA and the dimension reduction technique
MDS are applied for generating a layout for capturing the semantic relatedness
between source code files. We presented mappings between quantitative and
qualitative aspects of source code files, e.g., source code metrics or file types, and
visual variables of selected 3D glyphs for concrete program comprehension tasks.
We applied the city, the forest, and the island metaphor for our use-cases. Our



Visualization of Source Code Similarity using 2.5D Semantic Software Maps 17

 {
 ␣␣"modelFile":␣"PeopleCylinders2.glb",
 ␣␣"attributes":␣[␣"color"␣],
 ␣␣"modelScale":␣1.0,
 ␣␣"types":␣[
 ␣␣␣␣{␣"name":␣"Cylinder",
 ␣␣␣␣␣␣"baseModel":␣"Cylinder_Ax.001",
 ␣␣␣␣␣␣"variants":␣[
 ␣␣␣␣␣␣␣␣{␣"name":␣"Cylinder_Ax.001",␣"color":␣1.0␣},

 ␣␣␣␣␣␣␣␣{␣"name":␣"Cylinder_Ax.002",␣"color":␣0.75␣},
 ␣␣␣␣␣␣␣␣{␣"name":␣"Cylinder_Ax.003",␣"color":␣0.5␣},
 ␣␣␣␣␣␣␣␣{␣"name":␣"Cylinder_Ax.004",␣"color":␣0.25␣},
 ␣␣␣␣␣␣␣␣{␣"name":␣"Cylinder_Ax.005",␣"color":␣0.0␣}
 ␣␣␣␣␣␣]
 ␣␣␣␣},
 ␣␣␣␣{␣"name":␣"People",
 ␣␣␣␣␣␣"baseModel":␣"Person0",
 ␣␣␣␣␣␣"variants":␣[
 ␣␣␣␣␣␣␣␣{␣"name":␣"Person0",␣"color":␣1.0␣},
 ␣␣␣␣␣␣␣␣{␣"name":␣"Person1",␣"color":␣0.5␣},
 ␣␣␣␣␣␣␣␣{␣"name":␣"Person2",␣"color":␣0.0␣}
 ␣␣␣␣␣␣]
 ␣␣␣␣}
 ␣␣]
 }

Listing 1: An example JSON configuration of a mapping from attribute values to 3D
model. Two types of glyph categories are defined, namely “Cylinder” and “People”.
This configuration can be used to display source code files as cylinders and developers
as people-looking glyphs in the same semantic software map.

web-based visualization can visualize large data sets and provides a significant
degree of freedom to the user by supporting various interaction techniques.

Though LDA has shown great success in modeling the concepts inherent
in a software project [38], the possibility of visual indication of misleading or
irrelevant relations must not be neglected. For example, the positioning of a
document in 2D is not unique as it arises from a convex linear combination of the
reduced topic-word distributions. Therefore, two documents with totally different
document-topic distributions may be placed next to one another. In practice,
however, the choice of the Dirichlet prior α forces LDA to favor document-topic
distributions with only a few topics.

For our experiments, we created visualizations for the two Open Source
projects globjects and bitcoin. Both can be seen as representatives for mid-sized
software projects. However, a software visualization should also provide insights
into large projects as the need for program comprehension increases with project
size. Figure 9 shows a 2.5D visualization for the Machine Learning framework
TensorFlow11 that comprises a total of 13 154 files, where each file is represented
by a cylinder with the same visual mapping as presented in Section 4. The
data volume makes it difficult to maintain interactive framerates on average
machines. Though the island (without glyphs) is a map-like visualization in itself,
its capabilities are limited, as its number of visual variables is limited.

11 Source code taken from https://github.com/tensorflow/tensorflow

https://github.com/tensorflow/tensorflow


18 D. Atzberger et al.

Fig. 9. Visualization of the tensorflow dataset using cylinders. The dataset contains
13 154 files, which shows the limitation in discernible data items of our technique.

Our visual mappings were motivated by common questions in a software
development process. However, we do not provide empirical measurements, e.g.,
provided by a user study, that would demonstrate the actual benefit of our
visualizations for users. It is yet unclear whether the choice of visual variables
and glyphs is appropriate for users in real-world settings. The ideas presented in
Section 4 so far only provide a starting point for future investigations. Neverthe-
less, the given examples of map configurations indicate that our 2.5D software
visualization is suitable for depicting aspects of and relations within software data,
supports finding information and gaining knowledge, and possibly synchronizes
the mental representation of selected software aspects with the actual data.

6.2 Future Work

Concerning our visualization approach, various possibilities for future work exist.
Most importantly, the effectiveness of our approach and the visual mappings
should be evaluated in a systematic user study, e.g., to identify visual mappings
best-suited for program comprehension tasks in an industrial setting with de-
velopers and project managers. Furthermore, we can imagine including more
advanced visual mappings, especially in the case of the city metaphor [32].

Our glyph placement strategy is an example of a data-driven approach [50]
for that distortion techniques should be considered. Our examples indicate that
an increased glyph height tends to increase visual clutter. Therefore, distortion
strategies as presented in [50] seem well-suited for mitigation. A modern ap-
proach for removing distortion in 2.5D visualizations was presented in [48] and



Visualization of Source Code Similarity using 2.5D Semantic Software Maps 19

should be applicable for our case. Furthermore, quality metrics associated with
the results of dimension reduction techniques can help measure whether the
dimension reduction was able to capture local and global structures within a
dataset. As our visualization approach mainly builds upon the semantic layout,
we plan to implement a feature in our framework that generates the layout for a
given software project automatically by evaluating various dimension reduction
techniques with respect to selected quality metrics, as presented in [18].

Acknowledgements

This work is part of the “Software-DNA” project, which is funded by the European
Regional Development Fund (ERDF or EFRE in German) and the State of
Brandenburg (ILB). This work is part of the KMU project “KnowhowAnalyzer”
(Förderkennzeichen 01IS20088B), which is funded by the German Ministry for
Education and Research (Bundesministerium für Bildung und Forschung). We
further thank the students Maximilian Söchting and Merlin de la Haye for their
work during their master’s project at the Hasso Plattner Institute during the
summer term 2020.

References

1. Aggarwal, C.C., Zhai, C.: Mining text data. Springer Science & Business Media
(2012). https://doi.org/10.1007/978-1-4614-3223-4

2. Atzberger, D., Cech, T., de la Haye, M., Söchting, M., Scheibel, W., Limberger,
D., Döllner, J.: Software Forest: A visualization of semantic similarities in source
code using a tree metaphor. In: Proceedings of the 16th International Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics Theory and Applica-
tions – Volume 3 IVAPP. pp. 112–122. IVAPP ’21, INSTICC, SciTePress (2021).
https://doi.org/10.5220/0010267601120122

3. Atzberger, D., Cech, T., Jobst, A., Scheibel, W., Limberger, D., Trapp, M., Döllner,
J.: Visualization of knowledge distribution across development teams using 2.5d
semantic software maps. In: Proc. 13th International Conference on Information
Visualization Theory and Applications. IVAPP ’22, INSTICC, SciTePress (2022)

4. Atzberger, D., Scheibel, W., Limberger, D., Döllner, J.: Software Galaxies: Dis-
playing coding activities using a galaxy metaphor. In: Proc. 14th International
Symposium on Visual Information Communication and Interaction. pp. 18:1–2.
VINCI ’21, ACM (2021). https://doi.org/10.1145/3481549.3481573

5. Beck, F.: Software feathers – figurative visualization of software metrics. In: Proc.
5th International Conference on Information Visualization Theory and Applica-
tions - Volume 1: IVAPP. pp. 5–16. IVAPP ’14, INSTICC, SciTePress (2014).
https://doi.org/10.5220/0004650100050016

6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003). https://doi.org/10.5555/944919.944937

7. Chen, T.H., Thomas, S.W., Hassan, A.E.: A survey on the use of topic models when
mining software repositories. Empirical Software Engineering 21(5), 1843–1919
(2016). https://doi.org/10.1007/s10664-015-9402-8

https://doi.org/10.1007/978-1-4614-3223-4
https://doi.org/10.5220/0010267601120122
https://doi.org/10.1145/3481549.3481573
https://doi.org/10.5220/0004650100050016
https://doi.org/10.5555/944919.944937
https://doi.org/10.1007/s10664-015-9402-8


20 D. Atzberger et al.

8. Chernoff, H.: The use of faces to represent points in k-dimensional space graph-
ically. Journal of the American Statistical Association 68(342), 361–368 (1973).
https://doi.org/10.1080/01621459.1973.10482434

9. Chuah, M., Eick, S.: Glyphs for software visualization. In: Proc. 5th International
Workshop on Program Comprehension. pp. 183–191. IWPC ’97, IEEE (1997).
https://doi.org/10.1109/WPC.1997.601291

10. Cornelissen, B., Zaidman, A., van Deursen, A.: A controlled experiment for pro-
gram comprehension through trace visualization. IEEE Transactions on Software
Engineering 37(3), 341–355 (2011). https://doi.org/10.1109/TSE.2010.47

11. Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van Deursen, A., van
Wijk, J.J.: Execution trace analysis through massive sequence and circular
bundle views. Journal of Systems and Software 81(12), 2252–2268 (2008).
https://doi.org/10.1016/j.jss.2008.02.068

12. Cox, M.A.A., Cox, T.F.: Multidimensional scaling. In: Handbook of Data Visualiza-
tion, pp. 315–347. Springer (2008). https://doi.org/10.1007/978-3-540-33037-0 14

13. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.:
Indexing by latent semantic analysis. Journal of the American Society for In-
formation Science 41(6), 391–407 (1990). https://doi.org/10.1002/(SICI)1097-
4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9

14. Dehaghani, S.M.H., Hajrahimi, N.: Which factors affect software projects
maintenance cost more? Acta Informatica Medica 21(1), 63–66 (2013).
https://doi.org/10.5455/aim.2012.21.63-66

15. Dübel, S., Röhlig, M., Schumann, H., Trapp, M.: 2d and 3d presentation of spatial
data: A systematic review. In: Proc. VIS International Workshop on 3DVis. pp.
11–18. 3DVis ’14, IEEE (2014). https://doi.org/10.1109/3DVis.2014.7160094

16. Erra, U., Scanniello, G.: Towards the visualization of software systems
as 3d forests: The CodeTrees environment. In: Proc. 27th Annual ACM
Symposium on Applied Computing. pp. 981–988. SAC ’12, ACM (2012).
https://doi.org/10.1145/2245276.2245467

17. Erra, U., Scanniello, G., Capece, N.: Visualizing the evolution of software systems
using the forest metaphor. In: Proc. 16th International Conference on Information
Visualisation. pp. 87–92. iV ’12 (2012). https://doi.org/10.1109/IV.2012.25

18. Espadoto, M., Martins, R.M., Kerren, A., Hirata, N.S.T., Telea, A.C.: To-
ward a quantitative survey of dimension reduction techniques. Transac-
tions on Visualization and Computer Graphics 27(3), 2153–2173 (2021).
https://doi.org/10.1109/TVCG.2019.2944182

19. Fernandez, I., Bergel, A., Alcocer, J.P.S., Infante, A., Gı̂rba, T.: Glyph-
based software component identification. In: Proc. 24th International Con-
ference on Program Comprehension. pp. 1–10. ICPC ’16, IEEE (2016).
https://doi.org/10.1109/ICPC.2016.7503713

20. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. the National Academy
of Sciences 101, 5228–5235 (2004). https://doi.org/10.1073/pnas.0307752101

21. Hawes, N., Marshall, S., Anslow, C.: CodeSurveyor: Mapping large-scale
software to aid in code comprehension. In: Proc. 3rd Working Confer-
ence on Software Visualization. pp. 96–105. VISSOFT ’15, IEEE (2015).
https://doi.org/10.1109/VISSOFT.2015.7332419

22. Hoffman, M., Bach, F., Blei, D.: Online learning for latent dirichlet allocation. In:
Advances in Neural Information Processing Systems. NIPS ’10, vol. 23, pp. 856–864
(2010)

23. Systems and software engineering–Vocabulary. Standard, International Organization
for Standardization (2017). https://doi.org/10.1109/IEEESTD.2017.8016712

https://doi.org/10.1080/01621459.1973.10482434
https://doi.org/10.1109/WPC.1997.601291
https://doi.org/10.1109/TSE.2010.47
https://doi.org/10.1016/j.jss.2008.02.068
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
https://doi.org/10.5455/aim.2012.21.63-66
https://doi.org/10.1109/3DVis.2014.7160094
https://doi.org/10.1145/2245276.2245467
https://doi.org/10.1109/IV.2012.25
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1109/ICPC.2016.7503713
https://doi.org/10.1073/pnas.0307752101
https://doi.org/10.1109/VISSOFT.2015.7332419
https://doi.org/10.1109/IEEESTD.2017.8016712


Visualization of Source Code Similarity using 2.5D Semantic Software Maps 21

24. Kleiberg, E., van de Wetering, H., van Wijk, J.J.: Botanical visualization of huge
hierarchies. In: Proc. Symposium on Information Visualization. pp. 87–87. INFOVIS
’01, IEEE (2001). https://doi.org/10.1109/INFVIS.2001.963285

25. Kleiner, B., Hartigan, J.A.: Representing points in many dimensions by trees and
castles. Journal of the American Statistical Association 76(374), 260–269 (1981).
https://doi.org/10.1080/01621459.1981.10477638

26. Kohonen, T.: Exploration of very large databases by self-organizing maps. In: Proc.
International Conference on Neural Networks. pp. 1–6. ICNN ’97, IEEE (1997).
https://doi.org/10.1109/ICNN.1997.611622

27. Kuhn, A., Loretan, P., Nierstrasz, O.: Consistent layout for thematic software maps.
In: Proc. 15th Working Conference on Reverse Engineering. pp. 209–218. WCRE
’08, IEEE (2008). https://doi.org/10.1109/WCRE.2008.45

28. Kuhn, A., Erni, D., Loretan, P., Nierstrasz, O.: Software cartography: Thematic
software visualization with consistent layout. Journal of Software Maintenance and
Evolution: Research and Practice 22(3), 191–210 (2010)

29. Lanza, M.: The Evolution Matrix: Recovering software evolution using soft-
ware visualization techniques. In: Proc. 4th International Workshop on
Principles of Software Evolution. pp. 37–42. IWPSE ’01, ACM (2001).
https://doi.org/10.1145/602461.602467

30. Lewis, J.P., Rosenholtz, R., Fong, N., Neumann, U.: VisualIDs: Automatic distinc-
tive icons for desktop interfaces. Transactions on Graphics 23(3), 416–423 (2004).
https://doi.org/10.1145/1015706.1015739

31. Limberger, D., Scheibel, W., Dieken, J., Döllner, J.: Visualization of data changes
in 2.5d treemaps using procedural textures and animated transitions. In: Proc. 14th
International Symposium on Visual Information Communication and Interaction.
pp. 6:1–5. VINCI ’21, ACM (2021). https://doi.org/10.1145/3481549.3481570

32. Limberger, D., Scheibel, W., Döllner, J., Trapp, M.: Advanced visual metaphors and
techniques for software maps. In: Proc. 12th International Symposium on Visual
Information Communication and Interaction. pp. 11:1–8. VINCI ’19, ACM (2019).
https://doi.org/10.1145/3356422.3356444

33. Limberger, D., Trapp, M., Döllner, J.: Depicting uncertainty in 2.5d
treemaps. In: Proc. 13th International Symposium on Visual Informa-
tion Communication and Interaction. pp. 28:1–2. VINCI ’20, ACM (2020).
https://doi.org/10.1145/3430036.3432753

34. Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., Baldi, P.: Mining eclipse
developer contributions via author-topic models. In: Proc. 4th International
Workshop on Mining Software Repositories. pp. 30:1–4. MSR ’07, IEEE (2007).
https://doi.org/10.1109/MSR.2007.20

35. Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., Baldi, P.: Sourcerer: min-
ing and searching internet-scale software repositories. Data Mining and Knowledge
Discovery 18(2), 300–336 (2009). https://doi.org/10.1007/s10618-008-0118-x

36. Malony, A., Hammerslag, D., Jablonowski, D.: Traceview: a trace visualization tool.
IEEE Software 8(5), 19–28 (1991). https://doi.org/10.1109/52.84213

37. Markovtsev, V., Kant, E.: Topic modeling of public repositories at scale using
names in source code. arXiv CoRR cs.PL (2017), https://arxiv.org/abs/1704.00135

38. Maskeri, G., Sarkar, S., Heafield, K.: Mining business topics in source code using
latent dirichlet allocation. In: Proc. 1st India Software Engineering Conference. pp.
113–120. ISEC ’08, ACM (2008). https://doi.org/10.1145/1342211.1342234

39. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic
model for authors and documents. In: Proc. 20th Conference on Uncer-

https://doi.org/10.1109/INFVIS.2001.963285
https://doi.org/10.1080/01621459.1981.10477638
https://doi.org/10.1109/ICNN.1997.611622
https://doi.org/10.1109/WCRE.2008.45
https://doi.org/10.1145/602461.602467
https://doi.org/10.1145/1015706.1015739
https://doi.org/10.1145/3481549.3481570
https://doi.org/10.1145/3356422.3356444
https://doi.org/10.1145/3430036.3432753
https://doi.org/10.1109/MSR.2007.20
https://doi.org/10.1007/s10618-008-0118-x
https://doi.org/10.1109/52.84213
https://arxiv.org/abs/1704.00135
https://doi.org/10.1145/1342211.1342234


22 D. Atzberger et al.

tainty in Artificial Intelligence. pp. 487–494. UAI ’04, AUAI Press (2004).
https://doi.org/10.5555/1036843.1036902

40. Scheibel, W., Limberger, D., Döllner, J.: Survey of treemap layout al-
gorithms. In: Proc. 13th International Symposium on Visual Informa-
tion Communication and Interaction. pp. 1:1–9. VINCI ’20, ACM (2020).
https://doi.org/10.1145/3430036.3430041

41. Scheibel, W., Trapp, M., Limberger, D., Döllner, J.: A taxonomy of treemap vi-
sualization techniques. In: Proc. 15th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications –
Volume 3: IVAPP. pp. 273–280. IVAPP ’20, INSTICC, SciTePress (2020).
https://doi.org/10.5220/0009153902730280

42. Schreiber, A., Misiak, M.: Visualizing software architectures in virtual reality with
an island metaphor. In: Proc. International Conference on Virtual, Augmented and
Mixed Reality: Virtual, Augmented and Mixed Reality: Interaction, Navigation,
Visualization, Embodiment, and Simulation. pp. 168–182. VAMR ’18, Springer
(2018). https://doi.org/10.1007/978-3-319-91581-4 13

43. Sievert, C., Shirley, K.: LDAvis: A method for visualizing and interpreting topics.
In: Proc. Workshop on Interactive Language Learning, Visualization, and Interfaces.
pp. 63–70. ACL (2014). https://doi.org/10.3115/v1/W14-3110

44. Skupin, A.: The world of geography: Visualizing a knowledge domain with car-
tographic means. Proc. National Academy of Sciences 101(suppl 1), 5274–5278
(2004). https://doi.org/10.1073/pnas.0307654100

45. Steinbrückner, F., Lewerentz, C.: Representing development history in software
cities. In: Proc. 5th International Symposium on Software Visualization. pp. 193–202.
SOFTVIS ’10, ACM (2010). https://doi.org/10.1145/1879211.1879239

46. Steinbrückner, F., Lewerentz, C.: Understanding software evolution
with software cities. Information Visualization 12(2), 200–216 (2013).
https://doi.org/10.1177/1473871612438785

47. S̆tĕpánek, A.: Procedurally generated landscape as a visualization of C# code. Tech.
rep., Masaryk University, Faculty of Informatics (2020), bachelor’s Thesis

48. Vollmer, J.O., Döllner, J.: 2.5d dust & magnet visualization for large mul-
tivariate data. In: Proc. 13th International Symposium on Visual Informa-
tion Communication and Interaction. pp. 21:1–8. VINCI ’20, ACM (2020).
https://doi.org/10.1145/3430036.3430045

49. Wagner, L., Scheibel, W., Limberger, D., Trapp, M., Döllner, J.: A framework for
interactive exploration of clusters in massive data using 3d scatter plots and webgl.
In: Proc. 25th International Conference on 3D Web Technology. pp. 31:1–2. Web3D
’20, ACM (2020). https://doi.org/10.1145/3424616.3424730

50. Ward, M.O.: A taxonomy of glyph placement strategies for multidimensional data
visualization. Information Visualization 1(3–4), 194–210 (2002)

51. Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations,
Techniques, and Applications. CRC Press (2010)

52. Wettel, R., Lanza, M.: Visualizing software systems as cities. In: Proc. International
Workshop on Visualizing Software for Understanding and Analysis. pp. 92–99.
VISSOFT ’07, IEEE (2007). https://doi.org/10.1109/VISSOF.2007.4290706

53. Wettel, R., Lanza, M.: CodeCity: 3d visualization of large-scale software. In:
Companion of the 30th International Conference on Software Engineering. pp.
921–922. ICSE Companion ’08, Association for Computing Machinery (2008).
https://doi.org/10.1145/1370175.1370188

https://doi.org/10.5555/1036843.1036902
https://doi.org/10.1145/3430036.3430041
https://doi.org/10.5220/0009153902730280
https://doi.org/10.1007/978-3-319-91581-4_13
https://doi.org/10.3115/v1/W14-3110
https://doi.org/10.1073/pnas.0307654100
https://doi.org/10.1145/1879211.1879239
https://doi.org/10.1177/1473871612438785
https://doi.org/10.1145/3430036.3430045
https://doi.org/10.1145/3424616.3424730
https://doi.org/10.1109/VISSOF.2007.4290706
https://doi.org/10.1145/1370175.1370188


Visualization of Source Code Similarity using 2.5D Semantic Software Maps 23

54. Würfel, H., Trapp, M., Limberger, D., Döllner, J.: Natural phenomena as metaphors
for visualization of trend data in interactive software maps. In: Proc. Conference
on Computer Graphics and Visual Computing. pp. 69–76. CGVC ’15, EG (2015).
https://doi.org/10.2312/cgvc.20151246

https://doi.org/10.2312/cgvc.20151246

	Visualization of Source Code Similarity using 2.5D Semantic Software Maps

