

HASSO - PLATTNER - INSTITUT
für Softwaresystemtechnik an der Universität Potsdam

Ji Hu, Dirk Cordel und Christoph Meinel

A Virtual Machine Architecture
for Creating IT-Security Labs

Technische Berichte Nr. 13
des Hasso-Plattner-Instituts
für Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik

an der Universität Potsdam

Nr. 13

A Virtual Machine Architecture
for Creating IT-Security Labs

Ji Hu, Dirk Cordel und Christoph Meinel

Potsdam 2006

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

Die Reihe Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der
Universität Potsdam erscheint aperiodisch.

Herausgeber:

Redaktion:
Email:

Vertrieb:

Druck:

Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam

Ji Hu, Dirk Cordel und Christoph Meinel
{ji.hu; .cordel; meinel}@.hpi.uni-potsdam.de

Universitätsverlag Potsdam
Postfach 60 15 53
14415 Potsdam
Fon +49 (0) 331 977 4517
Fax +49 (0) 331 977 4625
e-mail: ubpub@uni-potsdamde
http://info.ub.uni-potsdam.de/verlag.htm

allprintmedia gmbH
Blomberger Weg 6a
13437 Berlin
email: info@allprint-media.de

© Hasso-Plattner-Institut für Softwaresystemtechnik an der Universität Potsdam, 2006

Dieses Manuskript ist urheberrechtlich geschützt. Es darf ohne
vorherige Genehmigung der Herausgeber nicht vervielfältigt werden.

Heft 13 (2006)
ISBN 3-939469-13-0
ISBN 978-3-939469-13-1
ISSN 1613-5652

Hasso�Plattner�Institut für Softwaresystemtechnik
an der Universität Potsdam

Technischer Bericht

A Virtual Machine Architecture for Creating
IT�Security Laboratories

von
Ji Hu, Dirk Cordel und Christoph Meinel

Abstract

E-learning is a �exible and personalized alternative to traditional education. Nonetheless,
existing e-learning systems for IT security education have di�culties in delivering hands-on
experience because of the lack of proximity. Laboratory environments and practical exercises
are indispensable instruction tools to IT security education, but security education in con-
ventional computer laboratories poses the problem of immobility as well as high creation and
maintenance costs. Hence, there is a need to e�ectively transform security laboratories and
practical exercises into e-learning forms.
This report introduces the Tele-Lab IT-Security architecture that allows students not only to
learn IT security principles, but also to gain hands-on security experience by exercises in an
online laboratory environment. In this architecture, virtual machines are used to provide safe
user work environments instead of real computers. Thus, traditional laboratory environments
can be cloned onto the Internet by software, which increases accessibilities to laboratory
resources and greatly reduces investment and maintenance costs.
Under the Tele-Lab IT-Security framework, a set of technical solutions is also proposed to
provide e�ective functionalities, reliability, security, and performance. The virtual machines
with appropriate resource allocation, software installation, and system con�gurations are used
to build lightweight security laboratories on a hosting computer. Reliability and availability
of laboratory platforms are covered by the virtual machine management framework. This
management framework provides necessary monitoring and administration services to detect
and recover critical failures of virtual machines at run time. Considering the risk that virtual
machines can be misused for compromising production networks, we present security manage-
ment solutions to prevent misuse of laboratory resources by security isolation at the system
and network levels.
This work is an attempt to bridge the gap between e-learning/tele-teaching and practical
IT security education. It is not to substitute conventional teaching in laboratories but to
add practical features to e-learning. This report demonstrates the possibility to implement
hands-on security laboratories on the Internet reliably, securely, and economically.

1

2

Contents

1. Introduction 7
1.1. Challenges in IT security education . 7
1.2. The concept of Tele-Lab IT-Security . 7
1.3. Requirements for online security laboratories 9
1.4. Structure . 9

2. Related work 10
2.1. Multimedia courseware . 10
2.2. Demonstration software . 10
2.3. Simulation systems . 10
2.4. Dedicated computer laboratories . 11

3. Architecture 12
3.1. The Tele-Lab portal . 12
3.2. Virtual lab . 12

3.2.1. Tutoring system . 13
3.2.2. User work environment . 14

3.3. Virtual machine management . 14
3.4. Security management . 14

4. Creating virtual machines 15
4.1. Installation . 15

4.1.1. Virtual kernel . 15
4.1.2. Virtual disks . 15
4.1.3. User work environment . 15
4.1.4. Tutoring server . 16

4.2. Resource allocation . 16
4.2.1. Processor resource allocation . 16
4.2.2. Virtual memory allocation . 16
4.2.3. Virtual disk resource allocation . 17

5. Virtual machine management 18
5.1. Virtual machine management framework . 18
5.2. The VM assignment table . 18
5.3. VM administration . 19
5.4. VM monitoring . 20
5.5. User monitoring . 20
5.6. User noti�cation . 20

3

Contents

6. Security 21
6.1. Security requirements . 21
6.2. System level isolation . 21
6.3. Network level isolation . 22

6.3.1. IP-address reuse . 22
6.3.2. Packet �ltering for access control . 24

7. Performance 26
7.1. Performance benchmarks . 26
7.2. Benchmark results . 26

8. Applications 30
8.1. Learning processes . 30
8.2. Case study: password-based authentication . 33

9. Conclusions 38

Bibliography 39

A. Symmetric encryption demonstration 41

B. Secure email demonstration 44
B.1. The SMIME exercise . 44
B.2. The Enigmail exercise . 49

4

List of Figures

1.1. The concept of Tele-Lab IT-Security . 8
3.1. An overview of the Tele-Lab architecture. 12
5.1. VM management framework. 18
5.2. Web administration console. 19
6.1. Structure of the virtual network. 25
7.1. Process creation time of the performance benchmark. 28
7.2. Memory bandwidth of the performance benchmark. 28
7.3. Filesystem latency of the performance benchmark. 29
8.1. The start page of the IT security tutor. 32
8.2. Introduction to password-based authentication. 34
8.3. The password cracker tutorial created by Flash. 35
8.4. The password cracking exercise. 35
8.5. Content of a Linux �passwd� �le. 36
8.6. Downloading the �passwd� �le. 36
8.7. Cracking the �passwd� �le in a root shell. 36
8.8. Submitting the cracking result. 37
A.1. DES demonstration. 41
A.2. The GnuPG tutorial. 42
A.3. The task of the GPG decryption exercise. 43
A.4. Completion of the GPG decryption exercise. 43
B.1. Working environment of the SMIME exercise 45
B.2. Requesting a personal certi�cate. 46
B.3. Import and con�guration of a personal certi�cate. 46
B.4. The task to digitally sign a message. 47
B.5. Signing a message. 47
B.6. Verifying the signature for evaluation. 48
B.7. The work environment of the Enigmail exercise. 49
B.8. Creating a PGP keypair. 50
B.9. Publishing the public key. 50

5

List of Tables

3.1. A chapter on Password-based Authentication 13
6.1. The translation table of the VNC access points. 23
6.2. Enforcement of port forwarding rules. 24
7.1. System speci�cation of the performance benchmark. 27
8.1. Topics being developed in Tele-Lab IT-Security. 31

6

1. Introduction

With increasing emergence of security threats and system vulnerabilities, IT security has
more and more impact on our daily work and life. In order to strengthen public awareness
of IT security, many universities have integrated security courses into their curricula. Those
courses are taught by traditional measures such as textbooks, slides, or papers. In most cases,
however, only theoretical aspects of IT security are covered and one essential part of education,
i.e. hands-on experience, has been neglected. In very few cases, students have a chance to
learn practical skills or to experiment in production environments. In fact, one of the most
important purposes of security education is to prepare the skillful workforce in response to the
future security challenges [Bishop, 2000]. Practical IT security education must meet the need
of training students to apply security technologies for real environments. In this connection,
traditional teaching measures have been proved to be insu�cient. There is a need to provide
hands-on security experiences by exercises in laboratory environments.

1.1. Challenges in IT security education

Nowadays, e-learning has been applied in security education and become complementary part
to traditional classroom teaching. This can be demonstrated by many tele-lectures, tutoring
systems, and demonstration programs which have been used for everyday teaching and learning
[Schillings and Meinel, 2002], [Rowe and Schiavo, 1998], [Woo et al., 2002], [Esslinger, 2002],
[Spillman, 2002]. Nevertheless, e-learning has di�culties in delivering hands-on security expe-
rience. This is particularly because e-learning has failed to deal with laboratory environments
and real-life exercises. From a practical point of view, teaching security in conventional com-
puter laboratories is su�cient to help students to gain hands-on experience. But, pitifully,
such laboratories often lead to high costs and geographical limits, which degrades its acces-
sibility for the people outside campus. In response to the problems above, we came up with
an idea to integrate laboratories environment and practical exercises to e-learning systems. If
this idea works it would result in a very helpful solution to o�er individuals easy accesses to
laboratory resources via the Internet.

1.2. The concept of Tele-Lab IT-Security

Tele-Lab IT-Security is a novel concept for teaching various subjects of information and net-
work security. Its original objective is to develop a web-based instruction tool which allows
students to learn about IT security and also gain experiences by exercises. In order to provide
real-life experience, these exercises are planned to run on a real OS. As shown in Figure 1.1,
Tele-Lab has a web interface. The tutor is a web server which presents teaching materials from
a knowledge repository to students and provides them navigation in learning and exercises.

7

1. Introduction

���������	

����
��������	����	

���
�������

����	

����
��

�����
��	������

���������	

�
���

�� 	

!������

�"���	#

	$�%�����&'�

�����		

(�� 	������)

����'
��	

�'�
���

Figure 1.1.: The concept of Tele-Lab IT-Security .

User work environment is supported by a native Linux which integrates necessary security
tools which are needed by the exercises. Therefore each Linux machine can be used as a
�virtual� laboratory where a student is able to exercise practical security. Those exercises are
designed as scripts so that the tutor can prepare tasks by calling them. After students �nish
their tasks with security tools, their submission will be evaluated also by scripts. In this way,
we can realize a real-life learning scenario.
To support teaching security in laboratories, we have developed a standalone Tele-Lab system
[Hu et al., 2003] which uses a native Linux as a user work environment. In order to ease
administration workload, the entire Tele-Lab system including both the Linux system and
teaching materials is integrated into a Knoppix live-CD [Hu and Meinel, 2004]. It is a special
bootable CD on which we can run a complete Linux OS without the presence of a hard disk.
By this means, a portable and reliable training CD has been realized. It can be easily used on
any common PC. If any failures or errors take place, the computer can be restarted without
damaging hardware or software systems.
The motivation to develop the virtual machine architecture for Tele-Lab is to transfer the na-
tive Tele-Lab system into a web-based server from which laboratory resources are available for
remote users via the Internet. In this architecture virtual machines [Goldberg, 1974] instead
of physical PCs are applied for providing separated work environments. Virtual machines
(VM) are software for simulating a physical computer. Since they are normally user-level
applications and can be connected to a network, we can run a number of VMs on a host and
clone an entire laboratory network on a host. On a VM we can give a privilege right to its
user. Any crash of the VM caused by the user would not a�ect the Tele-Lab host and can be
easily recovered. Thus laboratory resources can be created and accessed conveniently at a low
cost.

8

1. Introduction

1.3. Requirements for online security laboratories

Tele-Lab IT-Security provides a virtual machine architecture for online security laboratories.
Before it becomes a pragmatic solution, following requirements need to be specially taken into
account:

• Functionality. In order to e�ectively clone functions which are normally provided
by real laboratories, VMs must be carefully con�gured with suitable VM software. A
user who works on a VM should not notice obvious di�erences in function from his/her
experience on a real machine.

• Reliability. Users would feel frustrated if services or VMs are frequently interrupted
by failures. Hence, prompt detection of VM errors and fast recovery from failure are
necessary to guarantee service availability.

• Security. With privileges allowed on VMs and Internet connections, a VM might be
converted by its user to an attack workstation and endanger production networks. User
activities on the VM must be under control and misuses of laboratory resources should
be prevented by security measures.

• Performance. In order to run VMs as many as possible, the Tele-Lab server must
provide enough system resources. On the other hand, performance is crucial for indi-
vidual VMs. The Tele-Lab server has to manage simultaneous access and each VM has
to possess reasonable resources for its user.

Therefore, besides the architecture, this report also focuses on a set of solutions to meet its
functionality, reliability, security, and performance requirements.

1.4. Structure

The rest of this report is organized as follows: Section 2 brie�y introduces related work in
security education. Section 3 presents an overview of the Tele-Lab IT-Security architecture.
Then Section 4 explains the design and implementation of the Tele-Lab architecture and also
addresses the construction, management, and security issues in detail. Section 5 describes
the performance benchmarks of the virtual machines of Tele-Lab. Section 6 introduces the
application and evaluation of the Tele-Lab architecture and presents some case studies. Finally
Section 7 concludes the report and �gures out future work.

9

2. Related work

Related work in security education mainly includes multimedia courseware, demonstration
software, simulation systems, and dedicated computer laboratories for security experiments.

2.1. Multimedia courseware

Multimedia courseware normally consists of digitized lectures and demonstrations, which fea-
tures text, images, animation, videos, etc, e.g. tele-Task [Schillings and Meinel, 2002] is a
state-of-the-art streaming system to create online lectures and seminars for teaching IT secu-
rity. Courseware in nature supports e-learning on the Web, but it pitifully o�ers no hands-on
experiences to learners.

2.2. Demonstration software

Demonstration software programs such as Cryptool [Esslinger, 2002] and CAP (�Crypto-
graphic Analysis Program�) [Spillman, 2002] are educational suits for learning about cryp-
tography and cryptanalysis. They provide more interactivity for students to play with al-
gorithms and therefore have more practical features than multimedia courseware. However,
because demonstration software is mainly used to learn academic cryptographic algorithms,
practical network security tools or everyday environments are seldom involved in learning of
this kind.

2.3. Simulation systems

Simulation systems are normally used to train students in speci�c IT security subjects. E.g.
[Rowe and Schiavo, 1998] and [Woo et al., 2002] familiarize students with intrusion detection
by creating audit �les with information on user activities and asking students to detect and
resolve an intrusion problem. CyberCIEGE [Irvine and Thompson, 2004] is a simulation game
in which players construct computer networks and make decisions to protect valuable assets
from attacks. Simulation systems o�er students chances to perform operations for accomplish-
ing �real� tasks such as identifying intrusion and recovering or cleaning systems. Nonetheless,
those security operations are not really performed but simulated in an abstract environment.
In fact, real computer systems can be modeled by such simulations only to a very limited
degree. Simulation systems increase interactivity to some degree but still o�er students no
chance to apply real world tools and see what's going on in practice.

10

2. Related work

2.4. Dedicated computer laboratories

Dedicated computer laboratories for IT security have been created in many universities. Exam-
ples include [Vigna, 2003], [Ragsdale et al., 2003], [Ho�man et al., 2003], [Lindskog et al., 1999].
Security experiments or exercises are usually arranged on the dedicated computer networks.
Compared to other approaches, dedicated computer laboratories are ideal environments for
practical security teaching because security exercises are performed by application of produc-
tion software in real systems. However, practical education by laboratory measures normally
results in high costs. Dedicated networks require expensive hardware/software investments
and intensive e�orts to create, con�gure, and maintain laboratory environments as well as to
prepare, supervise, and evaluate exercises. On the other hand, most security exercises require
system level access to the operating system. This introduces the risk of misuse and inconve-
nience of administration[Vigna, 2003]. For security reason, dedicated networks are normally
operated on isolated networks, which implies that such security laboratories pitifully fail to
bene�t a wider range of learners outside campus.
Existing work above indicates that we need a new approach to integrate practical security
exercises into e-learning and degrade the costs of laboratory resources.

11

3. Architecture

Figure 3.1 shows an overview of the Tele-Lab architecture. Its main components include:
Tele-Lab portal, which is the front-end of Tele-Lab to provide a web interface for accessing
laboratories via networks; Virtual lab, which hosts a number of con�gured virtual machines
(VMs) to be assigned as dedicated laboratory environments; and related VM management
functions for the assignment, monitoring, and maintenance of the VMs.

3.1. The Tele-Lab portal

The portal provides entrances for both learners and administrators. If a learner logs on it
will present a VNC applet embedded in the browser, by which the learner can access a VM.
The applet is a client of the Virtual Network Computing [Richardson et al., 1998] which is
a remote display system to allow a user to view a desktop environment from the Internet.
In Tele-Lab, VNC is used to provide an interface to VMs. For an administrator, the portal
presents a management front-end for monitoring and managing Tele-Lab and its VMs.

3.2. Virtual lab

The virtual lab runs a number of VMs and connects them to a virtual network. In order to
prevent them from exhausting the system resources of the host, we have chosen User-Mode
Linux (UML) to create lightweight VMs. One advantage of UML is that it can create a small
virtual Linux on top of a real Linux operating system. These VMs are carefully con�gured so
that the host can support more VMs and yet maintain a reasonable performance.
Each VM implements a self-contained learning environment that has been shown in Figure
1.1. It consists of an IT security tutoring system and a user work environment. The tutoring

�������
���	
��
�������

���������	

���	��

����
�������

�� ��

�� ��

���	
��
���
����

����
��������������	

������

�

���

Figure 3.1.: An overview of the Tele-Lab architecture.

12

3. Architecture

Table 3.1.: A chapter on Password-based Authentication

Concepts section Password hashing (DES and MD5)
The �passwd� �le in Linux
Password selection criteria

Tools section The passwd command in Linux
The John-the-Ripper Password Cracker

Exercise section Cracking random-generated passwords with John-the-Ripper

system is a local web server to present teaching contents and organize security exercises. The
user work environment is supported by a UML Linux system. It allows privileged access for
�nishing exercises.

3.2.1. Tutoring system

The security tutoring system consists of a knowledge repository, a tutor, and some exercise
scripts.

• Knowledge Repository is a content database which has three types of teaching sec-
tions: theoretical concepts, tool tutorials, and exercises. Concept Sections introduce
declarative knowledge of a subject e.g. public-key encryption. They are presented in
text, graphics or videos. Tool Sections present the tutorials on some security tools.
They are closely related to the subject and involve screenshots or animations. In Exer-
cise Sections students can perform security tasks. They are designed as scenarios and
implemented by scripts. To �nish a task, the students must apply some of the tools
introduced in the tool sections on the VM and take step-by-step interaction with the
tutoring system. Generally a security subject contains sections of those three types.
Table 3.1 is an example chapter for a security subject.

• Tutor is responsible for content presentation, learning navigation, and exercise man-
agement. The tutor organizes the sections in the repository to form a teaching chapter.
It also guides a user where to start a subject and where to continue at the end of each
learning step. Meanwhile the tutor records user's learning results and shows some statis-
tics about the user. The exercise management is done by calling scripts (e.g. Perl or
PHP scripts) to prepare tasks and evaluate results.

• User pro�le is imported to the tutoring system when the user logs in from the portal.
It stores a user's personal data and performance data. Personal data include some items
like names, accounts and user types. Users can register themselves as one of three types:
�general user", �administrator" and �student". For each user type, a di�erent set of the
subjects is de�ned. E.g. �administrator" allows a user to learn about more advanced
subjects than general users. Performance data is about user's learning performance, e.g.
information about the sections worked through and the time spent on them. Those data
are used to create a summary about a user's learning.

13

3. Architecture

3.2.2. User work environment

The user work environment is provided by UML. It consists of a virtual Linux OS kernel and
a basic �le system (a Debian image). Basic system programs, graphical user interfaces, and
open-source security tools are installed on it. User con�gurations such as the accounts and
software settings are also prede�ned. Thus a user has a convenient operating environment
and a lot of trivial steps are avoided. The local user interface on a VM is straight and simple:
To access the tutoring system, a Mozilla browser is used and for performing exercises security
programs or tools can be applied via a shell or an X-window interface. When necessary a user
is able to switch to a privileged mode and perform system-level operations.

3.3. Virtual machine management

The goal of the VM management is to ensure Tele-Lab to continuously run in a reliable
way. Its main management functions include VM administration, VM monitoring, and user
monitoring. Section 5 will give more details on management functions.

3.4. Security management

Security is an important factor which we must deal with in every aspect of the Tele-Lab
architecture. Generally, each user is allowed a privilege right on his/her virtual machine. This
situation introduces a serious security problem: users might convert their virtual machine into
an attack station and corrupt the Tele-Lab system or compromise production networks. The
mission of security management of Tele-Lab is to implement e�ective security isolation and to
prevent misuse of virtual machines.

14

4. Creating virtual machines

VMs should be real, lightweight platforms with reasonable performances. This section de-
scribes installation, resource allocation and benchmarks of VMs.

4.1. Installation

VM installation includes the work to install and con�gure a virtual OS, a user work environ-
ment, and the tutoring system.

4.1.1. Virtual kernel

The virtual kernel is implemented by User-Mode Linux (UML) which can be treated as any
other ordinary application on the host and can be easily customized. The Tele-Lab host is a
Debian Linux server. The VM created by UML consists of a virtual kernel (version 2.4.26-
3um) and at least one virtual disk partition. A VM has a similar boot process to a native
Linux except that it starts from a user terminal.

4.1.2. Virtual disks

They provide �le systems for installing a base system of Linux and other software programs.
To run UML, we need at least a root �lesystem. File systems are simulated by using large
sized �les on the host and will be speci�ed when booting a VM. The generated �lesystem is
empty. We then created a Debian installation on the �lesystem so that the UML kernel is
able to run a basic Debian Linux with necessary programs (including drivers, shell, essential
system and graphical programs). The Debian installation for VMs is special compared with
a normal installation because it must match a virtual kernel instead of a real kernel.

4.1.3. User work environment

It requires necessary software and appropriate con�guration. System software includes shell
programs such as editors and administration tools. For web applications, a simple graphical
user interface (X-window and the XFCE window manager) and a browser (Mozilla-�refox)
are installed. Other programs are installed in terms of the needs of security exercises. E.g.
GunPG1 program for PGP encryption, John-the-Ripper for Password-based Authentication,
and the Exim mail server, OpenSSL, andMozilla-thunderbird for Secure Email. Con�gurations

1The GNU Privacy Guard (GunPG) http://www.gnupg.org/.

15

4. Creating virtual machines

are important to user interfaces. When a VM is assigned, user con�gurations are automat-
ically applied. E.g. a default account, �bob�, is used for a user to do most exercises, but if
privileged operations are needed, the user can obtain a root account by clicking an icon. As
to email con�gurations, account settings of the local mail server and clients are also prepared
in advance. Thus users can avoid irrelevant system setups before they can start exercises.

4.1.4. Tutoring server

It is a local web server on a VM, which consists of HTML or PHP pages and CGI programs
such as Perl scripts, shell scripts, and binary programs. Web tools such as Apache and the
PHP4 and Perl interpreters are installed on each VM. Web contents stay on the host. They
are shared by all VMs and can be conveniently synchronized.

4.2. Resource allocation

Resource allocation of VMs is to isolate resource consumption and performance among them.
By allocating processor, memory and disk resources to VMs, we can limit the resource usage
of individual VMs and improve overall performances.

4.2.1. Processor resource allocation

Isolation of processor resources among VMs is necessary to stop denial-of-service attacks
caused by malicious processes in a VM. Processor resource allocation and isolation are sup-
ported by the following ways or their combinations:

• Limiting the number of the virtual processors assigned to a VM: i.e. if a VM is given
two processors, it has no more than two processes running on the host no matter how
many processes it is trying to generate.

• Degrading the priority of VM processes by adjusting their nice2 value: then VM pro-
cesses get less processor time than other host processes.

• Using high-end hardware for the host machine: fast processors and big memory can
e�ectively relieve performance impacts from VMs.

4.2.2. Virtual memory allocation

The size of �physical� memory of a VM is speci�ed before it is booted. The memory is not a
real physical space of the host but a virtual memory space emulated by a temporary �le. The
virtual memory is then mapped into a physical address space and swapped out to the disk
when it does not need to access physical space. Thus, we can provide VMs with a big virtual
memory space instead of the real size of physical memory. The virtual memory is mounted as
a dynamic RAM based �lesystem supported by the temporary �lesystem (TMPFS). TMPFS
2�nice� is a Linux command to execute a command with lower priority, i.e. be "nice" to other users.

16

4. Creating virtual machines

[Snyder, 1990] can e�ectively speed up accessing of virtual memory �les. E.g. we suppose to
run 30 VMs on a host, each of which needs 64 MB �physical� memory. Intuitively we need
at least 1.8 GB (30 × 64 MB) RAM space. With virtual memory (1.8 GB swapped in a
temporary directory), only about 809 MB real RAM was indeed used for running those VMs.
It is just 42% of the total "physical memory" space for 30 VMs.

4.2.3. Virtual disk resource allocation

Each VM needs an installed Linux �lesystem on a virtual disk. To avoid assigning each VM
a big disk image, we created an original image as a �backing �le� and save live changes to a
small Copy-On-Write (COW) �le. Then, all VMs can read data from the same backing �le
while storing individual updates into their COW �le. Since COW �les can be created, copied
or deleted as a normal �le, VMs can be started, killed, or recovered on demand like any other
application. Tele-Lab uses a 300 MB backing �le which contains a typical Linux installation.
In fact, copy-on-write (COW) �les are used by VMs. This saves a large number of disk space.
E.g. under general use of a VM, COW �les are very small (20 B - 200 KB). To start 30 VMs
on the host, about 310 MB real disk space (30 COW �les plus the backing �le) is indeed used,
which is merely 3,4% of the total disk space (30 × 300 MB) all VM can provide.

17

5. Virtual machine management

VM management has an important role in Tele-Lab: it is responsible for assignment and
maintenance of VMs and therefore guarantees them work in a reliable manner. User-Mode
Linux has an essential control tool, i.e. mconsole. It allows a client to access UML kernel from
the host to con�gure, stop, reboot, and backup VMs. Mconsole also has an event noti�cation
interface, through which programs inside a VM can send messages to the host. Based on
mconsole, it is possible to implement advanced management functions for Tele-Lab.

5.1. Virtual machine management framework

The management frame of Tele-Lab consists of �ve main components: a VM assignment table
and the function modules to administrate and monitor VMs or users (see Figure 5.1). The
VM assignment table is a data structure which records actual states of each VM. The VM
administration module is responsible for starting, stopping, or recovering VMs in speci�c
circumstances. The VM monitoring module detects and reports critical errors of the VMs.
The user monitoring module watches user activities on the VM and detects abnormal events.
The user noti�cation module informs a user about events on his/her VM.

5.2. The VM assignment table

Information in the VM assignment table indicates which VMs have been assigned and to
whom, which are free, and which are found failed and need recovery. Active VMs have an

�������

��	

���
��

����

����������

����

������������

�� ��

�� ��

��������

	�

��
�����
��

��������������

��

����������

��
����������

���
�

���

��������
�
��

Figure 5.1.: VM management framework.

18

5. Virtual machine management

Figure 5.2.: Web administration console.

entry in the table. Each entry includes �elds like VM name and number, current mode, source
IP, and current user. The VM name and number are used to identify a VM. Source IP is
referred to the address of the user machine. The user name speci�es the user who is using
the VM. The mode indicates the current state of the VM. A VM runs in one of three possible
modes: �free�, �assigned �, and �recovered �. A VM is �free� when it is started and has not yet
assigned to any one. A VM is �assigned� to a user when he or she logs in. Then it becomes an
exclusive workstation for that user. The �recovered� mode is a transitional state and triggered
in two cases: (1) if a VM fails it will be marked as �recovered� and restarted in the background;
(2) if a user logs out, his/her VM will be immediately reclaimed and recovered. After recovery,
it will change to �free� and a new VM is ready.

5.3. VM administration

The VM administration module provides control functions to assign, reclaim, and recover
VMs. When a user logs in, the administration module searches the assignment table for a free
VM and assigns one to this user if possible. Then the mode of the VM changes to �assigned�
and the corresponding entry in the assignment table is updated. When a user logs out, his/her
VM is reclaimed and returns to mode �free� after a recovery procedure. A VM is recovered
to default settings by killing all processes related to the VM and restarting it with a default
COW copy. Recovery is triggered when a user logs out or exceptional events happen (e.g. VM
failures).
We also developed a friendly interface for the administrator to control VMs and monitor their
system status. This interface includes an administration console and a system status monitor.

• Administration Console provides controls to start/stop the Tele-Lab system, create/recover
VMs, and shows the updates of the VM assignment table (see Figure 5.2).

19

5. Virtual machine management

• System Status Monitor provides system status information of the host and each VM.
Details about their processor, memory, disks, and network performance are presented by
graphs. It periodically collects status data from the host and VMs. Then those status
data are processed and performance-related statistics are generated. Finally a set of
graphs is created from the performance data.

5.4. VM monitoring

This module collects the state of each VM and reports errors to the administration module.
There are two approaches to implement monitoring. The �rst approach is installing a moni-
toring agent on each VM, which can report precise and detailed state information of the VM
in real time. But its problem is that it can be interrupted or disabled by users. Alternatively,
we can periodically poll VMs, scan their services, and report errors on the services. Normally,
the services to be scanned are necessary. Any failure of them will result in di�culty in work-
ing on the VM. E.g. the VNC, Web, and an email server are a prerequisite for learning and
exercises. Any failure of them indicates that the VM is defective and needs recovery. This
approach is useful to detect critical errors in general situations though some errors might be
missed. Tele-Lab implemented monitoring by services scanning because of its simplicity and
reliability. Even if any critical errors are missed, the user who notices the problems can request
a new VM by clicking a button on his/her web page.

5.5. User monitoring

The user monitoring module is used to reduce unnecessary occupation of system resources. It
monitors user activities on VMs and measures user's idle time by tracking a user's keyboard
and mouse inputs on a VM. Instead of monitoring system event logs which could be altered by
users, we developed a software hook at the VNC client and directly monitored input events.
We modi�ed part of the original VNC client program and added a detection code to record
the time of the user's latest keyboard/mouse events and measure his/her idle time on a the
VM. If the idle time exceeds a threshold (e.g. 20 mins), it indicates the user won't continue
his/her learning and his/her VM will be reclaimed. Thus the freed resources can be used for
other users.

5.6. User noti�cation

This function is necessary to inform a user of special events on his/her VM in real time. E.g.
if any critical failure is detected and before the VM is recovered, its user should be noti�ed of
this event and then he/she can continue exercises on a VM. In order to capture messages, a
small frame is embedded in the browser, which refreshes itself each 15 seconds to get message
updates on VM events.

20

6. Security

Security is an important consideration to the Tele-Lab architecture. Security requirements
of Tele-Lab are special compared with other online learning or tutoring systems. In many
security exercises, users are allowed a privilege right on VMs. This introduces a security risk
that a user might convert his/her VM to an attack station and corrupt the Tele-Lab system or
compromise production networks. Therefore, we had to �nd a way to balance functionality and
security of Tele-Lab. We came up with the idea of security isolation, which allows necessary
accessibility to VMs while constraining risks in a safe scope.

6.1. Security requirements

In general, corruptions of VMs will not cause serious problems because they can be handled
by the VM management. Our concern is about the risk of misusing VMs. Because misuses
often take place around the boundary between a VM and the outside, we had to make sure
those isolations at the boundaries on the system and virtual network levels.

1. System level isolation. The host operating system should be protected from any intrusion
from VM processes. Strict access control must be enforced between a VM and the host
to isolate their process space from each other.

2. Network level isolation. Users should only be able to establish connections which are
required for performing exercises. We need e�ective access control between a VM and
its outside nodes such as other VMs and production systems to prevent network attacks.

6.2. System level isolation

The basic idea to secure User-Mode VM processes is �root jail� [Dike, 2001], i.e. the privilege
right of a VM can be safely assigned to its user by running the VM as a user-level application
on the host. Thus, the root user is jailed in the VM and privileged access from a VM to the
host is disallowed. Successful root jailing requisites that system calls from the VM on the host
must be safe. VMs are emulated by the port of system calls and thus the most possible way
to break out of a VM to the host is to exploit system calls. Therefore, we must assure that
any kind of VM processes has no ability to execute arbitrary system calls to the host.
User-Mode Linux VM processes by default run in the tracing thread mode (the �tt� mode).
This mode is problematic because the VM kernel shares the same address space with its user
processes and the kernel space is writable. By accessing kernel data, a process could possibly
break out to the host by forging system calls. Security isolation requires that the VM kernel

21

6. Security

memory is protected against modi�cation by user space and any critical information of the
kernel must stay inside the kernel. In this way, user processes of a VM have no possibility to
forge system calls that they want and to escape from the jail.
System security isolation can be implemented with the Separate Kernel Address Space mode
(the �skas� mode), which is a secure mode to run User-Mode Linux. It requires to apply a
patch on the host kernel. This patch implements a separate address space scheme: the VM
kernel runs in an entirely di�erent host address space from its user processes. VM kernel
binary and data are totally invisible to its processes and to anyone logged in to it. This makes
VM kernel data secure from tampering by its processes. Therefore, �root jail� with the support
of the �skas� mode can e�ectively protect the host and implement system security isolation.

6.3. Network level isolation

The level of security isolation constrains all user actions in the scope of a VM by applying
controls on all connections between the VM and the outside. The access control has the
following policies:

• Local connections and local network services are allowed on a VM.

• A VM is not allowed to initialize any network connection to the other VMs on the host.

• A VM is allowed to accept or respond to the connections for the VNC service if this VM
has been assigned.

• Except for those connections mentioned in Policy 3, a VM is not allowed to launch any
forms of connections for the Internet.

Our idea for access control is enforcing the policies above on a so-called �iptables� �rewall.
Iptables sets up a �rewall to perform operations on IP packets. Iptables has three kinds of
tables to de�ne control rule sets. One table contains a number of chains. Each chain de�nes a
set of rules. Those rules are applied on those packets which traverse the chain. The nat table
and the �lter table are the most important tables for de�ning access control rules.

1. The ��lter � table is speci�cally designed to �lter packets.
2. The �nat� table is designed to perform network address translation for packets, portfor-

warding, etc.

6.3.1. IP-address reuse

Each VM is a node of a private network (a virtual LAN in the host). By default no VMs are
accessible from the outside. If any VM is assigned, its VNC service will be accessible over the
Internet via the host network interface. This requires multiple VMs to share a public address.
Such an address reuse scheme was implemented by port forwarding, which assigns each VNC
server on the VMs a unique port number. When a VNC packet comes to the public network

22

6. Security

interface, iptables checks the packet header and forwards it to the right VM depending on its
heading port number. With address reuse, access control can be implemented by applying
rules on port forwarding.
E.g. IP address authentication can be done by allowing only a validated user to be able to
connect to her/his own VM. E.g. each VM on the virtual LAN is assigned a private address,
which is calculated from the number of the VM, �192.168.0.99 + number�. For instance,
�VM1� has �192.168.0.100�, �VM2� has �192.168.0.101�, and so forth. The VNC server on
each VM is locally listening on two ports: �5800� and �5900� (see the 2nd column of Table
6.1). The port forwarding rules translate those internal access points to public access points.
Then, those VNC services are mapped to di�erent ports (�5799 + number� and �5899 +
number�) on the host network interface (�141.199.55.40�). The translation table is shown in
Table 6.1.

Table 6.1.: The translation table of the VNC access points.

VM Internal Access Point Public Access Point

VM1 192.168.0.100 : (5800, 5900) ⇒141.199.55.40 : (5800, 5900)
VM2 192.168.0.101 : (5800, 5900) ⇒141.199.55.40 : (5801, 5901)
.
VM30 192.168.0.129 : (5800, 5900) ⇒141.199.55.40 : (5829, 5929)

Those translation rules in the nat table are dynamically managed depending on the assignment
situation of the VMs. At the beginning, iptables disables any port forwarding for VMs. If a
VM is assigned, speci�c rules are inserted to the nat chains. When the user logs out, those rules
for his/her VM are immediately abandoned. For example, when a user from �163.158.1.2� logs
in to the Tele-Lab host which publicly runs on the �141.199.55.40�, a VM must be assigned
to this user. Here, we suppose VM3 on �192.168.0.102� is chosen by the VM management
system. Then two rules will be inserted into the PREROUTING chain of the nat table:

iptables -t nat -A PREROUTING -s 163.158.1.2 -p tcp dport 5802 -j DNAT to 192.168.0.103:5800

and

iptables -t nat -A PREROUTING -s 163.158.1.2 -p tcp dport 5902 -j DNAT to 192.168.0.103:5900

Those rules map the VNC service of VM3 to the public access point: �141.199.55.40 : (5803
and 5903)�. The �-s�, �-p� and ��dport� options are used for access control: only VNC
connections from the authenticated user (on �163.158.1.2�) are allowed to be forwarded to
that VM. Finally, this public access point will be passed to the VNC client at the user end,
so it knows where to connect the VNC server of the VM. Table 6.2 shows the enforcement of
the port forwarding rules on the packets in this example.

23

6. Security

Table 6.2.: Enforcement of port forwarding rules.

VNC Packet Original Altered

Client request Source: 163.158.1.2/7890*
Dest: 141.199.55.40/5802

Source: 163.158.1.2/7890
Dest: 192.168.0.102/5800

Server reply Source: 192.168.0.102/5800
Dest: 163.158.1.2/7890

Source: 141.199.55.40/5802

Dest: 163.158.1.2/7890

Client request Source: 163.158.1.2/8335*
Dest: 141.199.55.40/5902

Source: 163.158.1.2/8335
Dest: 192.168.0.102/5900

Server reply Source: 192.168.0.102/5900
Dest: 163.158.1.2/8335

Source: 141.199.55.40/5902

Dest: 163.158.1.2/8335

(* 7890 or 8335 is the local port number of the VNC client.)

6.3.2. Packet �ltering for access control

The virtual network is di�erent from any conventional LAN. It is created by a virtual switch
device. As shown in Figure 6.1, �eth0� is the external interface of the host and �tap0� is
the internal interface created by the virtual switch. This virtual network has a very special
feature: each VM is attached to a central node (the virtual switch on the host), and any tra�c
of VMs must be relayed by the host. Therefore, we can apply an iptables �rewall to control
tra�c. In order to satisfy control policies, we have two categories of �ltering rules for iptables.
All �ltering rules refer to internal addresses because the NAT chains are processed before the
route decision in the packet �ltering chains. That is, source or destination addresses seen by
the packet �lter are local addresses.
Packet Filtering between VMs and External Networks: the following rules can be applied based
on the network structure in Figure 6.1.
Rule 1: external hosts are only allowed to access the VNC service on the virtual network (on
port 5800 and 5900).

iptables -A FORWARD -i eth0 -o tap0 -p tcp �dport 5800,5900 -j ACCEPT

Rule 2: only VNC related packets are allowed to go out of the virtual network to the outside.

iptables -A FORWARD -i tap0 -o eth0 -m state �state ESTABLISHED, RELATED -j ACCEPT

Rule 3: any packet from the Tele-Lab host onto the virtual network is allowed (for the VM
management).

iptables -A FORWARD -s 141.199.55.40 -o tap0 -j ACCEPT

Rule 4: only those packets related to the packets in Rule 3 are allowed to reach the Tele-Lab
host from the virtual network.

24

6. Security

����
��������

	
	
	

��
�

���	���	��	��

���	���	�	���

���	���	�	���

���	���	�	���

���

���

���	���	�	���

���	���	�	�

����

����

����

���� !�

���

Figure 6.1.: Structure of the virtual network.

iptables -A FORWARD -i tap0 -d 141.199.55.40 -m state �state ESTABLISHED, RELATED -j ACCEPT

Packet Filtering between VMs: Iptables is able to �lter any packets between VMs because the
Tele-Lab host is a central node of the virtual network. In order to isolate internal connections
between VMs, we can apply a simple rule on the INPUT chain.
Rule 5: a packet will be dropped if both the source and destination addresses of this packet
fall in the same address range of the virtual network.

iptables -A INPUT -i tap0 -o tap0 -j DROP

25

7. Performance

Performance is an important matter to the usability of VMs. The di�erence between VMs
and physical machine should be as small as possible. The following benchmarks were done to
determine the e�ectiveness of the replacement of real machines with VMs.

7.1. Performance benchmarks

Lmbench [McVoy and Staelin, 1996] was used for measuring VM performances. Lmbench is
an open-source software suite for operating system microbenchmarks. Because performance
issues are usually caused by latency problems, bandwidth problems, or their combinations,
lmbench runs a set of small microbenchmarks to measure system latency and bandwidth of
data movement among the processor and memory, network, �le system, and disk.
Machines to be benchmarked include the host, VMs, and other computers for comparison.
Their system speci�cations are summarized in Table 7.1. Tele-Lab server (�P IV 2800�) is the
host. Its Linux kernel was specially patched to enable the User-Mode Linux �SKAS� mode,
which improves VM kernel performance and security. We ran thirty VMs on the host. The
64 MB �physical� memory is simulated by the virtual memory of the host. The virtual disk
partition is provided by a COW �le which only stores di�erences from a shared root disk image.
�P II 350� is a reference machine, i.e. a native PC with decent installation. Speci�cations and
benchmark data of two native systems (�P Pro 167� and �P Pro 133�) came from the lmbench
database [McVoy and Staelin, 1996]. Lmbench version 3.0-a3 was applied in the benchmark.
It was compiled and installed on each machine. We �rst started all VMs on the host, and
then ran lmbench on the host and on VMs respectively. Depending on hardware conditions,
it took lmbench about from 30 minutes to one hour to �nish the benchmark on each machine.
It then produced a long list of detailed benchmark results.

7.2. Benchmark results

Among benchmark output, we were particularly interested in those related to the performance
of processes, memory, and �lesystems, such as process creation time, memory read/write
bandwidth, and �le system latency.
Figure 7.1 shows the time used to create processes on each platform. We can �nd that the
process creation time of the VM is very close to the machine of �P Pro 167�. I.e. the process
performance of VMs is nearly at the level of that of an Intel Pentium Pro 167 computer. This
performance looks not so satisfying compared with those of modern computers because the
UML Linux has to spend extra time to make system calls for processor simulation. However,
UML Linux is resource-friendly, e.g. one host can e�ectively run more VMs at a relatively low

26

7. Performance

Table 7.1.: System speci�cation of the performance benchmark.

Sys. Hardware Kernel Filesys.

P IV 2800 P IV 2.8 GHz (hyper threading)
2 GB RAM
50 GB IDE HD

Linux 2.4.26 / i686 -
smp

EXT3

VM Virtual kernel
64 MB V-RAM
300 MB V-Disk

UML 2.4.26 EXT2

P II 350 P II 350 MHz
64 MB RAM
10 GB Disk

Linux 2.4.18 EXT3

P Pro 167 P Pro 167 MHz Linux1.3 / i686 EXT2
P Pro 133 P Pro 133 MHz SunOS 5.5.1 UFS

resource expense. Although part of process performance is sacri�ced, we gained e�ciency in
hand.
Memory read and write rates are shown in Figure 7.2. We can �nd the memory performance
of the VM is extremely impressive. Except for the host, it performs much better than other
native machines. The memory bandwidths of VM are about 6.6 times higher than those of
�P II 350� and nearly equivalent to those of the host. This is because UML Linux is able to
utilize most resources of the host and so inherits a good performance.
Figure 7.3 shows the result of �le system latency. Lmbench created 1,000 zero-sized small �les
in the current working directory and then removed those �les. The time of the �le creation
and removal was measured respectively. Similar to the memory bandwidth, the �lesystem
performance of the VMs is also very satisfying and its �le I/O is one time faster than that of
the native computer of �P II 350�.
The benchmark results indicate that a high-performance host helps to improve performance of
the VMs. With reasonable con�gurations, a VM can be seen as a machine between a Pentium
II 350 computer and a Pentium Pro 167 computer. Intuitive experience also shows that VMs
can smoothly run most general applications from common system operations to web browsing.
Therefore, VMs have been proved an e�ective and e�cient computing-resource replacement
of physical machines for Tele-Lab IT-Security.

27

7. Performance

0

5

10

15

20

25

30

35

40

45

50

P IV 2800 Virtual machine P II 350 P Pro 167 P Pro 133

Pr
oc
es
s
cr
ea
tio
n
tim
e
(m
s)

fork + exit fork, exec + exit fork, exec sh -c + exit

Figure 7.1.: Process creation time of the performance benchmark.

0

500

1000

1500

2000

2500

3000

P IV 2800 Virtual machine P II 350 P Pro 167 P Pro 133

M
em

or
y

ba
nd

w
id

th
 (M

B
/s

)

Memory read Memory write

Figure 7.2.: Memory bandwidth of the performance benchmark.

28

7. Performance

1

10

100

1000

10000

P IV 2800 Virtual machine P II 350 P Pro 167 P Pro 133

Fi
le
sy
st
em
 la
te
nc
y
(m
ic
ro
se
co
nd
s)

Create Delete

Figure 7.3.: Filesystem latency of the performance benchmark.

29

8. Applications

Tele-Lab IT-Security can be used to teach various subjects in cryptography and network secu-
rity. Like other online training or tutoring systems, Tele-Lab IT-Security presents theoretical
facts about subjects as well as relevant tutorials and demos. The distinction of Tele-Lab
from the other systems is that it o�ers students chances to perform security experiments in a
lightweight and real-life laboratory environment. Up to the winter semester 2005/2006, with
the help of a student group at the Hasso-Plattner-Institute, we created eleven security chapters
featuring practical exercises for Tele-Lab. Those chapters cover a broad range of subjects such
as secret-/public-key encryption, secure email, authentication, port scanning, access control,
intrusion detection, man-in-the-middle, �rewalls, wireless security, etc. Practical features of
those chapters are listed in Table 8.1.
With a modularized structure for organizing contents, Tele-Lab can be adapted for speci�c
teaching purposes or user groups. In general, Tele-Lab can be used in the following ways:

• Supporting security courses. Tele-Lab supplies laboratory exercises for a speci�c course.
Contents are designed or re-organized according to a course plan. In this circumstance,
the Tele-Lab server can be deployed in a laboratory or accessible from campus networks.

• Online-learning. Tele-Lab is operated as an e-learning service. It is a complete tutoring
system: both theoretical basics and practical exercises are integrated. With the virtual
machine architecture, Tele-Lab is a distinct tele-teaching tool for delivering hands-on
experience over the Internet.

• Industrial training. Tele-Lab is customized for security training in industry. Contents
are developed for speci�c training topics or products which are interesting to companies
or theirs customers.

8.1. Learning processes

Before a user starts learning, he/she must register an account. On the registration page, the
user inputs personal data as well as selects language settings (�English� or �German�) and user
categories (�admin�, �general user�, or �IT student�). The data then is processed to create a
user pro�le in a database. The security tutor is by default started when the virtual machine is
assigned to the user. Once the user starts the security training, the pro�le of this user will be
imported from the host and applied in the virtual machine (see Figure 8.1). Then the tutor
presents a list of available chapters from which the user can choose one. A Tele-Lab chapter
is arranged like this: theoretical facts of a chapter are introduced �rst; afterwards, tutorials
of related security tools are presented; �nally practical exercises are prepared and assigned to
the user.
Normally, an exercise is performed in three steps:

30

8. Applications

Table 8.1.: Topics being developed in Tele-Lab IT-Security.

Topic Practical Features

Symmetric
Encryption

Learn about cryptography and symmetric encryption.
Exercise message encryption/decryption using GnuPG.

Public-Key Encryption Exercise how to use GunPG and OpenSSL to create key pairs and certi�-
cates.
Exercise encrypting and signing with both tools.

Secure Email Learn about email security standards, SMIME and OpenPGP.
Exercise signing /encrypting messages via the Mozilla Thunderbird client using
SMIME and Enigmail (PGP) tools.

Password-based
Authentication

Learn about password security and exercise decoding passwords with the
John-the-Ripple cracker.

Access Control Demonstrate how access control mechanisms in Linux are breached by Bu�er
Over�ow.

Port Scanning Exercise how to �nd services on the target host with Nmap and close unnecessary
services.

Firewalls Exercise con�guring an iptable packet �lter and setting up a �rewall in Linux.
Intrusion Detection Exercise setting up the Snort IDS program.

Detecting attacks from the Snort log �les.
Packet Sni�ng Demonstrate how plain FTP sessions can be eaves-dropped.

Exercise detecting ARP spoo�ng attacks with the Arpwatch tool.
Man-in-the-Middle Demonstrate how man-in-the-middle attacks compromise SSL sessions.
Wireless security Learn about Wireless related sni�ers and crackers.

31

8. Applications

Figure 8.1.: The start page of the IT security tutor.

32

8. Applications

• Exercise preparation. To con�gure necessary system settings, the tutor will invoke par-
ticular Perl or shell scripts on the virtual machine. E.g. for the �Secure Email� exercise,
a virtual role and related mail settings are created so that email can be exchanged in an
e�ective circumstance.

• Task generation. The tutor activates scripts to generate data or materials (e.g. �les or
messages), which are needed in the exercise. Then questions are shown on the web page.
If possible, those questions are dynamically generated with di�erent details each time.
E.g. in the �Password Cracking� exercise, the �passwd � �le to be decrypted is generated
at run time.

• Result evaluation. The user completes tasks on the virtual machine. After submiting
results, the tutor evaluates them by scripts. To simulate a real scenario, evaluation pro-
cess is often done in an interactive way. For instance, to �nish the Secure Email exercise,
the user has to interact with the tutor and exchange signed or encrypted messages. In
each step, the tutor checks messages and tells user what to do in the next step. In case
of fail, the user can repeat the exercise until a correct solution is found.

8.2. Case study: password-based authentication

We demonstrate a concrete learning process with an example chapter, Password-Based Au-
thentication. It is about how users are authenticated through passwords and how passwords
are protected in the Linux systems. In its exercise, a Linux passwd �le is generated. The user
needs a privilege right to crack it with the�John-the-Ripper � cracker.

• In the introduction sections, concepts of password-based authentication are introduced
�rst (see Figure 8.2). Those concepts include password hashing (DES and MD5), the
UNIX �passwd� or �shadow� �les, and safe password criteria.

• Information about relevant security tools is presented next. Those tools include the
passwd command1, the PAM2, and the John-the-Ripper password cracker. Some of
them are introduced by Flash animation clips (see Figure 8.3).

• Tasks such as creating password hashes and cracking passwords are assigned to the user.
Here we only demonstrate the completion of the password cracking task. The �rst step
is work environment preparation: password hashing con�guration is initialized on the
virtual machine and DES is chosen as the default hashing function .

• The next step is to assign the user a task to crack passwords with John-the-Ripper (see
Figure 8.4).

• Each time, a group of random passwords is generated and saved in a �passwd� �le (see
Figure 8.5).

• The user downloads the �passwd� �le into a local directory of the virtual machine (see
Figure 8.6).

1A Linux command which creates passwords by DES hashing.
2PAM is �Pluggable Authentication Modules� to con�gure password hashing.

33

8. Applications

Figure 8.2.: Introduction to password-based authentication.

• Evaluating results. In order to apply John-the-Ripper, the user must have a privilege
right. Tele-Lab provides a �Root Terminal� button on the virtual machine. From that,
the user can switch to a root mode and execute John-the-Ripper to crack passwords
(shown in Figure 8.7).

• After passwords are found and answers are submitted, the tutor examines the submission
(see Figure 8.8). Then the evaluation result is shown to the user and recorded in the
user pro�le.

More examples are given in Appendix A and Appendix B.

34

8. Applications

Figure 8.3.: The password cracker tutorial created by Flash.

Figure 8.4.: The password cracking exercise.

35

8. Applications

Figure 8.5.: Content of a Linux �passwd� �le.

Figure 8.6.: Downloading the �passwd� �le.

Figure 8.7.: Cracking the �passwd� �le in a root shell.

36

8. Applications

Figure 8.8.: Submitting the cracking result.

37

9. Conclusions

This report has presented Tele-Lab IT-Security which is a novel virtual machine architecture
for creating online IT security laboratories. It allows students not only to learn security
concepts and principles, but also to experiment security and gain hands-on experiences in a
lightweight and safe laboratory environment. In addition to the architecture itself, a set of
technical solutions has been proposed to address the requirements of functionality, reliability,
security and performance. Tele-Lab IT-Security has following advantages which distinguish it
from other security teaching/learning approaches:

• Besides a tutoring system for learning theoretical principles, Tele-Lab o�ers hands-on
experiences.

• Tele-Lab provides a real-life laboratory environment instead of limited simulation. It
mobilizes the access to learning as well as reduces the costs for creation and maintenance
of laboratory platforms.

• Tele-Lab has a thin web user interface through which security tools and programs are
accessible via a VNC applet without additional client software.

• Although risky security experiments are allowed in Tele-Lab, it is managed in a reliable
and available manner. The misuses of laboratory resources are prevented by security
isolation.

Future work will focus on extending interfaces for other virtual machines software such as
Xen, VMWare, etc. By doing so, we can o�er users more security experiences on di�erent
operating systems like Windows platforms.
In summary, Tele-Lab IT-Security is a research work attempting to bridge the gap between
e-learning and practical IT security education. Tele-Lab is not going to completely substitute
the conventional laboratory teaching but add practical features to e-learning. Our work has
demonstrated the possibility to implement hands-on security laboratories on the Internet
reliably, securely, and economically.

38

Bibliography

[Bishop, 2000] Bishop, M. (2000). Education in information security. IEEE Concurrency,
8(4):4�8.

[Dike, 2001] Dike, J. (2001). User-mode Linux. In Proceedings of the 5th Annual Linux
Showcase & Conference, Oakland, California, USA.

[Esslinger, 2002] Esslinger, B. (2002). Cryptool - spielerischer einstieg in klassische und mod-
erne kryptographie: Neue version - fundierte awareness in deutsch und englisch. Datenschutz
und Datensicherheit, 26(10).

[Goldberg, 1974] Goldberg, R. P. (1974). Survey of virtual machine research. IEEE Computer,
pages 34�45.

[Ho�man et al., 2003] Ho�man, L., Dodge, R., Rosenberg, T., and Ragsdale, D. (2003). In-
formation assurance laboratory innovations. In Proceedings of the 7th Colloquium for In-
formation Systems Security Education, Washington, DC, USA.

[Hu and Meinel, 2004] Hu, J. and Meinel, C. (2004). Tele-Lab "IT-Security"on CD: Portable,
reliable and safe IT Security training. Computers & Security, Elsevier, 23(4):282�289.

[Hu et al., 2003] Hu, J., Schmitt, M., Willems, C., and Meinel, C. (2003). A tutoring sys-
tem for IT-Security. In Proceedings of the 3rd World Conference in Information Security
Education, pages 51�60, Monterey, USA.

[Irvine and Thompson, 2004] Irvine, C. E. and Thompson, M. F. (2004). Expressing an in-
formation security policy within a security simulation game. In Proceedings of the Sixth
Workshop on Education in Computer Security (WECS6), pages 43�49, Monterey, USA.

[Lindskog et al., 1999] Lindskog, S., Lindqvist, U., and Jonsson, E. (1999). IT security re-
search and education in synergy. In Proceedings of the 1st World Conference on Information
Security Education, Stockholm, Sweden.

[McVoy and Staelin, 1996] McVoy, L. and Staelin, C. (1996). Lmbench: Portable tools for
performance analysis. In Proceedings of the 1996 USENIX Annual Technical Conference,
pages 279�294, Berkeley.

[Ragsdale et al., 2003] Ragsdale, D., Lathrop, S., and Dodge, R. (2003). Enhancing infor-
mation warfare education through the use of virtual and isolated networks. Journal of
Information Warfare, 2(3):53�65.

[Richardson et al., 1998] Richardson, T., Sta�ord-Fraser, Q., Wood, K. R., and Hopper, A.
(1998). Virtual network computing. IEEE Internet Computing, 2(1):33�38.

39

Bibliography

[Rowe and Schiavo, 1998] Rowe, N. C. and Schiavo, S. (1998). An intelligent tutor for intru-
sion detection on computer systems. Computers and Education, 31:395�404.

[Schillings and Meinel, 2002] Schillings, V. and Meinel, C. (2002). Tele-TASK - tele-teaching
anywhere solution kit. In Proceedings of ACM SIGUCCS 2002, Providence, USA.

[Snyder, 1990] Snyder, P. (1990). tmpfs: A virtual memory �le system. In Proceedings of the
European UNIX Users Group Conference, pages 241�248.

[Spillman, 2002] Spillman, R. (2002). CAP: A software tool for teaching classical cryptology.
In Proceedings of the 6th National Colloquium on Information System Security Education,
Redmond, Washington, USA.

[Vigna, 2003] Vigna, G. (2003). Teaching hands-on network security: Testbeds and live exer-
cises. Journal of Information Warfare, 2(3):8�24.

[Woo et al., 2002] Woo, C., Choi, J., and Evens, M. (2002). Web-based ITS for training system
managers on the computer intrusion. In Proceedings of the 6th International conference on
Intelligent Tutoring Systems, pages 311�319, Biarritz, France and San Sebastian, Spain.

40

A. Symmetric encryption demonstration

The Tele-Lab chapter, �Symmetric Encryption�, introduces important concepts on symmetric
encryption, illustrates related algorithms, and provides practical exercises. In the exercises,
a user can apply a open-source encryption tool, GnuPG, to encrypt or decrypt messages.
Following contents and exercises are provided in this chapter:

• Essential cryptographic concepts and typical cipher algorithms are introduced in early
sections (see Figure A.1). E.g. in order to explain the DES algorithm1, we integrated
a visual demonstration from which a user can run explore the algorithm and watch
en-/decryption details .

Figure A.1.: DES demonstration.

• The tutorial section introduces an encryption tool, GPG (�GNU Privacy Guard �) which
is an opensource PGP (�Pretty Good Privacy�) program. From this tutorial, the user
learns how to apply encryption technology and tools to meet everyday needs (see Figure
A.2).

1DES is a signi�cant symmetric algorithm which includes 16 encryption rounds.

41

A. Symmetric encryption demonstration

Figure A.2.: The GnuPG tutorial.

• In the exercise sections, encryption and decryption exercises are assigned to the user. The
process of the decryption exercise includes the following steps: First, the tutor creates
four texts and one of them is randomly chosen. The chosen text is then encrypted by
GPG in the background and the corresponding secret message is produced (see Figure
A.3).

• The task for the user is to select the right plaintext of a list of four possible plaintexts.
In order to �nish this task, the user must download the secret message, �nd the key
from email, and decrypt it with GPG. Then the user has to submit the plaintext he/she
have found (see Figure A.4).

• After submission of the result, the tutor checks it and �nds out whether it is the matched
answer to the question. The evaluation result will be shown to the user and recorded
into his/her user pro�le. In case of fail, the tutor will ask him or her to have another
try.

• The encryption process is relatively simple. The tutor asks the user to encrypt a text.
The user has to do encryption and submit the secret text with a key which is used for
encryption. Then the tutor tries decrypting the submission. If it can successfully decrypt
the text with that key, this means the user has done a right job, otherwise he/she is
asked to try again.

42

A. Symmetric encryption demonstration

Figure A.3.: The task of the GPG decryption exercise.

Figure A.4.: Completion of the GPG decryption exercise.

43

B. Secure email demonstration

This chapter is intended to familiarize a user with digital certi�cates so that he/she can sign
and encrypt email. Exercises in this chapter simulate everyday email communications which
need a complicated and interactive user work environment. The learning process is described
as follows:

• The tutor presents concepts of secure email, which include security requirements for
email, measures to protect email such as encryption and digital signatures, and secure
email standards like OpenPGP1 and SMIME 2.

• The Thunderbird email client is introduced. Thunderbird is a popular email tool used
on Linux and Windows. It integrates a SMIME module and an OpenPGP module
called Enigmail. The SMIME module is the default security feature of Thunderbird and
Enigmail is a plug-in which encrypts or digitally signs email by GnuPG. The tutorials
for both email security tools are presented to illustrate how to apply them to secure
email.

• Two sets of tasks are designed for SMIME and Enigmail respectively. In both tasks, the
user is required to securely exchange email with a virtual partner.

B.1. The SMIME exercise

As shown in Figure B.1, the SMIME exercise requires an interactive laboratory environment.
In this environment, OpenSSL3, a certi�cate authority (CA), related mail services and ac-
counts have to be provided. For e�ective interaction, a virtual email partner named �Alice� is
also created. This partner account is necessary because, without it, a user does not know with
whom to exchange messages. In this exercise, the user is asked to manage digital certi�cates,
create/verify signature of messages, and encrypt/decrypt messages. The procedure that a user
creates a signature and sends a signed mail to Alice is described below:

1. Work Environment Preparation.

• The tutor generates a virtual user, Alice, i.e. creates and con�gures her Linux
account and email settings.

1�OpenPGP� is an encryption scheme based on PGP for interpreting and sending digitally signed and en-
crypted messages.

2�SMIME� (Secure Multipurpose Internet Mail Extensions) is the Internet standard for secure e-mail attach-
ments based on RSA and MIME (Multipurpose Internet Mail Extensions).

3OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer (SSL v2/v3) and Transport Layer
Security (TLS v1) network protocols and related cryptography standards (http://www.openssl.org/).

44

B. Secure email demonstration

��������	��

��	

�
	���

�	���

������

��	

�
�������

���	���

�������
��	�
��	

������

����	�	����

������	��

���� �
	��

Figure B.1.: Working environment of the SMIME exercise

• The tutor creates a certi�cate authority by generating a root certi�cate and setting
up a certi�cate service.

• The tutor issues a certi�cate for Alice and con�gures her mail account settings with
this certi�cate.

2. Exercise Execution.

• Importing the certi�cate. (1) A certi�cate request page is shown to the user.
He/she can �ll out the certi�cate request form and apply for a certi�cate from the
CA (see Figure B.2). (2) The user's private key is created and a corresponding
certi�cate �le (in PKCS12 4 format) is generated. The user is asked to download
his/her certi�cate �le and import it to his/her mail client. (3) The user opens the
Thunderbird's SMIME certi�cate manager, imports the certi�cate, and trusts it
for identifying email users (see Figure B.3). (4) The user also needs to con�gure
his/her mail account to use the imported certi�cate.

• Signing messages. The user is asked to write to Alice with a digital signature
(shown in Figure B.4). The user must compose a message, sign it with his/her
private key, and send it to Alice (see Figure B.5).

3. Result Evaluation

• To evaluate the result, the tutor behaviors as Alice in the background. It �rst
checks Alice's inbox and fetches the message sent by the user.

• The tutor veri�es its signature by OpenSSL scripts and con�rms whether it has
been sent from the student and matches with the origin (see Figure B.6).

• If veri�cation succeeds, the user will receive a con�rmation message and the com-
pletion of the task will be recorded into the user pro�le.

The message encryption/decryption task is arranged after the message signing task and follows
a similar procedure:
4PKCS 12 is the RSA personal information exchange syntax standard which describes a portable format for
storage and transportation of user private keys, certi�cates etc.

45

B. Secure email demonstration

Figure B.2.: Requesting a personal certi�cate.

Figure B.3.: Import and con�guration of a personal certi�cate.

46

B. Secure email demonstration

Figure B.4.: The task to digitally sign a message.

Figure B.5.: Signing a message.

47

B. Secure email demonstration

Figure B.6.: Verifying the signature for evaluation.

• After the user receives the signed message of Alice and imports her certi�cate, he/she
is asked to decode a message from Alice. The message is encrypted by Alice with the
user's own public key.

• The user then encrypts a message with Alice's public key and sends it to Alice. The tutor
will try to decrypt the message with Alice's private key corresponding to her certi�cate
and record the (un-)successful completion of the task in the user pro�le.

48

B. Secure email demonstration

B.2. The Enigmail exercise

The Enigmail exercise includes the tasks to manipulate public-private key pairs, create/verify
signature of messages, and encrypt/decrypt messages. In fact, the principle of the Enigmail
exercise is very similar to that of SMIME (see Figure B.7). It also needs a virtual partner,
Alice. The only deference between both is that Enigmail is based on open PGP which uses
a trust web model and has no central certi�cate authority. Certi�cates (PGP key pairs) and
trust have to be managed manually. The steps to prepare key pairs include:

��������	��
��	

�
	���
�
��	���	

�	���
������

��	

�
���

���	���
���

��	�
��	

������

���� �
	��

Figure B.7.: The work environment of the Enigmail exercise.

• First, the user must create a key pair of his/her own by using the GPG tool and then
con�gure his/her Enigmail settings of Thunderbird with the created key pair (see Figure
B.8).

• The user publishes his/her public key and obtains those of others. The user uploads
the key to the tutor and the tutor will con�gure it in Alice's mail account. The user
can download Alice's public key from the tutor. Thus, the user and Alice can exchange
public keys with each other (see Figure B.9).

With key pairs available and public key exchanged, the rest tasks of email signing and encryp-
tion follow similar processes to those of the SMIME exercise. The di�erence is that the user
will use OpenPGP key pairs instead of certi�cates, and the tutor will use GPG scripts in the
background to run interactive tasks.

49

B. Secure email demonstration

Figure B.8.: Creating a PGP keypair.

Figure B.9.: Publishing the public key.

50

Technische Berichte des Hasso-Plattner-Institut

Band ISBN Titel Autoren / Redaktion

1 3-937786-37-6
Auf dem Weg zu einem
Softwareingenieurwesen

Prof. Dr. Ing. S. Wendt

2 3-935024-98-3 Conceptual Architecture Pattern Bernhard Gröne, Frank Keller

3 3-937786-28-7 Grid-Computing
Dipl.-Inf. Peter Tröger; Sabine
Wagner

4 3-937786-10-4
JAVA Language Conversion Assitant An
Analysis

Stefan Richter, Stefan Henze,
Eiko Büttner, Steffen Bach,
Andreas Polze

5 9-937786-14-7 The Apache Modeling Project

Bernhard Gröne, Andreas
Knöpfel, Rudolf Kugel und Oliver
Schmidt

6 3-937786-54-6

Konzepte der Softwarevisualisierung für
komplexe, objektorientierte
Softwaresysteme

Prof. Dr. Jürgen Döllner,
Johannes Bohnet

7 3-937786-56-2
Visualizing Design and Spatial Assembly
of Interactive CSG

Prof. Dr. Jürgen Döllner, Florian
Kirsch, Marc Nienhaus

8 3-937786-72-4
Resourtcenpartitionierung für Grid-
Systeme

Prof. Dr. A. Polze Matthias
Lendholt, Peter Tröger

9 3-937786-73-2
Sichere Ausführung nich
vertrauenswürdiger Programme

Prof. Dr. A. Polze Johannes
Nicolai, Peter Tröger

10 3-937786-78-3 Survey on Service Composition
Prof. Dr. M. Weske Dominik
Kuropka Harald Meyer

11 3-937786-81-3 Requirements for Service Cinoisutuib
Prof. Dr. M. Weske Dominik
Kuropka Harald Meyer

12

3-937786-89-9 /
978-3-937786-
89-6

An e-Librarian Service - Natural Anguage
Interface for an Efficient Semantic Search
within Multimedia Resources Serge Linckels, Christoph Meinel

ISBN 3-939469-13-0
ISBN 978-3-939469-13-1
ISSN 1613-5652

	UmschlagImp.pdf
	A Virtual Machine Architecture for Creating IT- Security Laboratories
	Potsdam 2006
	
	Bibliografische Information der Deutschen Bibliothek
	Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
	Postfach 60 15 53

	Technische Berichte Liste.pdf
	Technische Berichte des Hasso-Plattner-Institut

	UmschlagImp.pdf
	A Virtual Machine Architecture for Creating IT- Security Laboratories
	Potsdam 2006
	
	Bibliografische Information der Deutschen Bibliothek
	Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
	Postfach 60 15 53

	UmschlagImp.pdf
	A Virtual Machine Architecture for Creating IT-Security Laboratories
	Potsdam 2006
	
	Bibliografische Information der Deutschen Bibliothek
	Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
	Postfach 60 15 53

	UmschlagImp.pdf
	A Virtual Machine Architecture for Creating IT-Security Labs
	Potsdam 2006
	
	Bibliografische Information der Deutschen Bibliothek
	Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
	Postfach 60 15 53

